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Bayesian Variable Selection under Collinearity of Parameters
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Abstract: Tn this study, we highlight some interesting facts about Bayesian variable selection methods for linear
regression models in settings where the design matrix exhibits strong collinearity. We first demonstrate via real
data analysis and simulation studies that summaries of the posterior distribution based on marginal and joint
distributions may give conflicting results for assessing the importance of strongly correlated covariates. The
natural question is which one should be used in practice. The simulation studies suggest that osterior inclusion
probabilities and Bayes factors that evaluate the importance of correlated covariates jointly are more appropriate
and some priors may be more adversely affected in such a setting. To obtain a better understanding behind the
phenomenon, we study some examples with Zellner’s g-prior. The results show that strong collinearity may lead
to a multimodal posterior distribution over models, in which jomt summanes are more appropriate than marginal
summaries. Thus, we recommend a routine examination of the correlation matrix and calculation of the joint
inclusion probabilities for correlated covariates, in addition to marginal inclusion probabilities for assessing the
unportance of covariates in Bayesian variable selection.
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INTRODUCTION

We first present a brief overview of the Bayesian
approach to variable selection m linear regression. Let
Y =(Y,, ..., Y,) denote the vector of response variables
and let x,, x,, ..., X, denote the p covariates. Models
corresponding to different subsets of covariates may be
represented by the vector y = (y,, . . . Y, suchthaty,=1.
when x; is included in the model and y;= O otherwise. Let
T' denote the model space of 2° possible models and
p(y):i:\ﬂ- denote the number of covariates in model v,
excluding the intercept. The linear regression model is:

YIB, B, @, YINCIB, +X,B, In/g) )
Where:
I = Annx] vector of ones
B, = The intercept
X, = The nxp, design matrix
B, = The p,x1 vector of regression coefficients under
model
¢ = The reciprocal of the error variance
I, = Annxn identity matrix

The mtercept 1s assumed to be mcluded m every
model. The models in Eq 1 areassigned a prior
distribution p(y) and the vector of parameter sunder each
model y 1s assigned a prior distribution p(8,|v) where

0, = (Pu, By. ©). The posterior probability of any modelis
obtained using Bayes’ rule as:

P(v|Y) =p(Y[¥)p(v) 1, @Y ey D

where,  p(YW)=[p(v|6y.v)p(Byy)dy i the marginal
distribution of Y under model y. This is also referred to as
the margmal likelihood of the model yv. We will consider
scenarios when the marginal likelithood may or may not
exist in closed form. For model selection, a natural choice
would be the Highest Probability Model (HPM). This
model 1s theoretically optimal for selecting the “true”™
model under a 0-1 loss function using decision theoretical
arguments. When p 1s larger than 25-30, the posterior
probabilities m Eq. 2 are not available for general design
matrices due to computation allimitations, irrespective of
whether the marginal likelthoods can be calculated in
closed form or not. Generally, one resorts to Markov
Chain Monte Carlo (MCMC) or other stochastic
sampling-based methods to sample models. The MCMC
samplesize 1s typically far smaller than the dimension (27)
of the model space when p is large. As a result Monte
Carlo estimates of posterior probabilities of mdividual
models can be unreliable which makes accurate estimation
of the HPMa challenging task.

Moreover, for large model spaces, the HPM may have
a very small posterior probability, so it i1s not clear if
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variable selection should be based on the HPM alone as
opposed to combining the information across models.
Thus, variable selection is often performed with the
marginal posterior nclusion probabilities, for which more
reliable estimates are available from the MCMC output.
The marginal inclusion probability for the jth covariate 1s
p(y¥j=1]7Y)=7? The use of these can be fiuther motivated
by the Median Probability Model (MPM) by Barbieri and
Berger (2004). The MPMincludes all variables whose
posterior marginal mclusion probabilities are >0.5. Instead
of selectinga single best model, another option 1s to
consider a weight edaverage of quantities of interest over
all models with weights being the posterior probabilities
of models. This i1s known as Bayesian Model Averaging
(BMA) and it is optimal for predictions under a squared
error loss function.

However, sometimes from a practical perspective, a
single model may need to be chosen for future use. In
such a situation, the MPM is the optimal predictive model
under a squared error loss function under certain
conditions (Barbieri and Berger, 2004). For the optimality
conditions to be satisfied, the columns of the design
matrixneed to be orthogonal in the all submodels scenario
and the priors must also satisfy some conditions.
Independent conjugate normal priors belong to the class
of priors that satisfies these conditions. Barbieri and
Berger (2004) suggested that in practicethe MPM often
outperforms the HPM even if the condition of
orthogonality 15 not satisfied. It 1s known that strong
collinearity in the design matrix could make the variance
of the ordinary least-square estimates unusually high. As
a result the standard t-test statistics may all be in
significant in spite of the corresponding covariates bemng
associated with the response variable. In this study, we
study a Bayesian analog of this phenomenon. Note that
our goal 1s not toraise concerns about Bayesian variable
selection methods, rather we describe in what ways they
are affected by collinearity and how to address such
problems straight forward manner. Further,
independent normal priors generally perform better than
Zellner’s g-prior (Zellner, 1986) and its mixtures m this
context. We provide some theoretical insight into the
problemusing the g-prior for the parameters under each

mn a

model and a discrete uniform prior for the model space.
Our results show that collinearity leads to a multimedal
posterior distribution which could lead to incorrect
assessment of the importance of variables when using
marginal inclusion probabilities. A simple solution 18 to
use the jomt inclusion probabilities (and joint Bayes
factors) which still provide accurate results. We conclude
with some suggestions to cope with the problem of
collinearity mn Bayesian variable selection.
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Biscuit dough data: To motivate the problem studied in
this study, we begin withan analysis of the biscuit dough
dataset, available as cookie in the R package. The dataset
was obtained from an experiment that used Near-In Frared
(NIR) spectroscopy to analyze the composition of biscuit
dough pieces. The experiment of Osbome ef al. (1984)
investigated whether NIR spectroscopy could be used for
automatic quality control in the biscuit baking industry.
Compared to classical chemical methods these are
nondestructive and fast. Hence, the method could
potentially be used for automatic online control. An NTR
reflectance spectrum for each dough 1s a contimuous
curve measwred at many equally spaced wavelengths.
The goal of the experiment was to extract the information
contained inthis cwve to predict the chemical
composition of the dough.

The package contains the training and test samples
used in the original experiment by Osborne et al. (1984)
where 39 samples were used for calibration and 31
samples made with a similar recipe were used for
prediction. We use the same training and test data.
Osbomme et al. (1984) concluded that the method was
capable of predicting the fat content in the biscuit doughs
sufficiently accurately. Brown ef al. (2001) omitted the
first 140 and last 49 of the available 700 wavelengths to
reduce the computational burden because these were
thought to contain little information. For our analysis, we
choose the wavelengths 191-205 to have p = 15 covariates
with high pairwise correlations (around 0.999) among all
of them and the percentage of fat as the response
variable. Considering all possible subsets of the full
model, this results in a model space of 2" models. The
model space is small enough that all posterior
probabilities (and thus, posterior inclusion probabilities)
can be calculated exactly or approximately by a Laplace
approximation. This ensuresthat there 1s no ambiguity in
the results due to Monte Carlo approximation.

We use a discrete uniform prior for the model space,
which assigns equal probability to each of the 2" models
and diffuse priors for the intercept P, and precision
parameter @, given by p(P,, @) =1/p. For the model
specific regression coefficients B,, we consider the
multivariate normal g-prior (Zellner, 1986) with g = n, the
multivariate Zellner-Siow (Zellner and Siow, 1980) Cauchy
prior and independent normal priors.

The margmal likelihood for the g-prior is given in
Eq. 5. For the Zellner-Siow prior, marginal likelihoods
are approximated by a Laplace approximation fora
one-dimensional integral over g, for example, Appendix 1
by Liang et al (2012) for more details. The posterior
computation for the different versions of g-priors is done
by enumerating all 2" models with the BAS algorithm
(Clyde et al., 2012). For the independent normal priors, we
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use the same hyper parameters as Ghosh and Clyde
(2012). We enumerate all models and calculate the
marginal likelihoods using Eq. 4 by Ghosh and Clyde
(2012) for posterior computation. Suppose, it 18 of interest
to predict a set of future response variables Y, at a set of
covariates X, from the same process that generated the
observed data Y. We use the mean of the Bayesian
predictive distribution p(Y{v,Y), for a given model y
where:

p(Y| 7. Y) 3)

The mean of the above distribution is of the form
18+, B, where B, and B, are the posterior means of B,
and {3, under the model y. Liang et @l. (2012), Ghosh and
Clyde (2012). For every prior considered, the posterior
marginal inclusion probability for each covariate is <0.5.
The marginal Bayes factor for Y, = 1 versus Y; = 0 is the
ratio of the posterior odds to the prior odds:

p(ri=1Y)/p(vi=0[Y)
p(vi=1)/p(¥i=0)

forj=1, .., p. Because p(y, = 1|Y) <0.5 the posterior odds
are <1 and the prior odds are equal to 1 under a uniform
prior, hence the marginal Bayes factors are <1. Here, the
MPM 18 the null model with only an intercept. The
predicted values are calculated using Eq. 3 and the
Prediction Mean Squared Error (PMSE) is 3.95.

As all 15 covariates are correlated, we next calculate
the Bayes factor BF(H,: H,), where H; 13 the model with
only the intercept and HA denotes its complement. For
the existence of the marginal likelihood under the null
model with only an intercept, we need the sample size to
be at least two and the sample variance of the response
variable to be strictly positive that is the values of the
response variable cannot be all equal. These conditions
are satisfied m this example and would usually hold for
continuous response variables. The Bayes factors are 114,
69 and 11.073, for the g-prior, Zellner-Siow prior and
independent normal priors. The Bayes factors are different
(in magnitude) under different priors but they
unammously provide strong evidence against H,. This
suggests that it could be worth while to consider a model
with at least one covariate. Because, all the covariates are
correlated with each other, the full model 15 worth an
mvestigation. The PMSEs for the full model under the
three priors are 4.55, 3.98 and 2.00, respectively. We also
consider prediction using the Highest Probability Model
(HPM) under each prior; for all priors the HPM only
selects covariate 13. The PMSEs for the HPM under all
priors are 2.03.
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This example illustrates three main points. First, for a
group of highly correlated covariates, the marginal
posterior mclusion probabilities for all of them may be low
even when the joint posterior inclusion probability that at
least one of them is includedis very high. Second, the
predictive performance using g-priors could be more
adversely affected than using mdependent priors when
highly correlated covariates are included in the model.
Third, if one has to select a single model for prediction,
the HPM could provide better prediction than the MPM
under collinearity because unlke the MPM, the HPM
does not discard the entire set of cormrelated covariates
associated with the response variable. Note that a
different choice of wavelengths as covariates may not
lead to selection of the null model as was the case here
using the MPM but our goal 1s to illustrate that this
phenomenon can happen in practice. For a given
model v, the posterior mean of the vector of regression
coefficients, (3, under the g-prior (as specified mBq 41s s/1+gfy
where f, is the Ordinary Least-Square (OLS) estimate of
B, (Liang et al., 2012; Ghosh and Reiter, 2013). It is well
known that OLS estimates can be unstable due to high
variance under collinearity, so it 1s not surprising that the
g-prior inherits this property. The corresponding estumate
estimate under the independent normal priors is a ridge
regression estimate (Ghosh and Clyde, 2012) which is
known to be more stable under collinearity. In the
following two sections, we try to underst and the problem
better by wusing simulation studies and theoretical
examples.

MATERIALS AND METHODS

Simulation studies: Owr goal 153 to compare the
performance of marginal and joint summaries of the
posterior  distribution for different priors under
collinearity. It 1s of interest to evaluate whether the
covariates in the “true” model can be identified by using
different priors and/or estimates. We agree with the
associate editor that amodel cannot be completely “true,”
however, we think like many researchers that studying the
performance of procedures based ondifferent priors
and/or estimates under a “true” model may giveus msight
about their behavior. From now on by important
covariates, we would refer to covariates with nonzero
regression coefficients in the “true” model. One could
also define “importance”in terms of predictive ability of
the model.

Important correlated covariates: We take n= 50, p=10
and q = 2, 3, 4 where q 18 the number of correlated
covariates. We sample a vector of n standard normal
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variables, say z and then generate each of the ¢ correlated
covariates by adding another vector of n mdependent
normal variables with mean 0 and standard deviation 0.05
to z. This results in parwise correlations of about 0.997
among the correlated covariates. The remaming (p-q)
covariates are generated mdependently as N(0O, 1)
variables. We set the mtercept and the regression
coefficients for the correlated covariates equal to one and
all other regression coefficients equal to zero. The
response variable is generated according to model Eq. 1
with ¢ = 1/4 and the procedure is repeated to generate 100
datasets. For all priors, the model space of 2" = 1024
models 15 enumerated.

If a covanate included 1n the “true” model 1s not
selected by the MPM, 1t 1s considered a false negative. If
a noise variable 1s selected by the MPM that leads to a
false positive. Tt could be argued that as long as the MPM
includes at leastone of the correlated covariates
associated with the response variable, the predictive
performance of the model will not be adversely affected.
Thus, we also consider the cases when the MPM drops
the entire group of “true” correlated covariates, when p(y;]
=11]7Y) <05 for all q correlated covariates. Results are
summarized in Table 1 interms of four quantities of which
the first three measure the performance of the marginal
mclusion probabilities that are used to determine the
MPM.They are defined as follows:

FINR: False negative rate defined as <., where mis
the number of simulated datasetsiTand FNRi is the
numberof true covariates that are not selected by the
MPM for theith dataset, divided by the total number of
true covariates ().

FPR: False positive rate defined as:

where, FPR1 1s the number of noise covariates that are
selected by the MPM for the ith dataset, divided by the
total number ofnoise covariates (p-q = 10-q).

Null: Proportion of datasets in which the MPM discards
all “true” correlated covariates simultaneously.

BY: Proportion of datasets m which the Bayes factor
BF(H,: Hy)=10 where H, 1s the hypothesis that v, = 0 for all
the q comelated covariates and H, denotes
complement. Table 1 shows that the false negative rate 1s
much higher for g=2 than q = 2. With q = 4, tlus rate 1s
higher than 80% for the g-priors and >10% for the
independent priors. The false positive rate is generally

its

lowand the performance is similar across all priors. For
q = 2, none of the priors drop all correlated covariates
together. However, for q = 3, 4, the g-priors show this
behavior in about 40-50% cases. This problem may be
tackled by considering jomt inclusion probabilities for
correlated covariates (George and McCulloch, 1997,
Barbieri and Berger, 2004; Berger and Molina, 2005) and
the comresponding Bayes factors lead to a correct
conclusion 99-100% of the time. The mdependent priors
seem more robust to collinearity and they never discard all
the correlated covariates. The under performance of the
estimates based on the g-priors could bepartly explained
by their some what in accurate representation of prior
belief in the scenarios under consideration.

Unimportant correlated covariates: Tn this simulation
study, we consider the same values of n, p and q as
before. We now set the regression coefficients for the q
correlated covariates at zero and the remaining (p-q)
coefficients at one. We generate the covariates and the
response variable. The results based on repeating the

=, FNRi procedure 100 times are presented in Table 2. The false

“~ m negative rates are similar across (Table 2).
Table 1: Simulation study with p = 10 covariates of which q correlated covariates are included in the “true” model as signals and (pq) uncorrelated covariates

denote noise
q=2 q=3 q=4

Prior ENR FPR MNull BF FNR FPR MNull BF FNR FPR MNull BF
g-prior 0.36 0.06 0.00 0.99 0.78 0.05 0.43 1.00 0.86 0.05 0.51 1.00
Zellner-Siow 0.21 0.08 0.00 0.99 0.77 0.06 0.38 1.00 0.87 0.04 0.54 1.00
Tndependent 0.01 0.06 0.00 0.99 0.14 0.05 0.00 1.00 0.15 0.05 0.00 1.00
normal

Table 2: Simulation study with p = 10 covariates of which q correlated noise variables are not included in the “true” model and (p-q) uncorrelated covariates

are included in the “true” model assignals

q=2 q=3 q=4
Prior FNR FPR BF FNR FPR BF FNR FPR BF
g-prior 0.15 0.03 0.00 0.16 0.02 0.01 0.15 0.03 0.00
Zellner-Siow 0.11 0.07 0.00 0.11 0.06 0.01 0.10 0.07 0.00
Independent normal __ 0.14 0.08 0.00 0.16 0.03 0.00 0.14 0.00 0.00
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This is expected because these are affected by the
uncorrelated covariates only. The false positive rates are
generally small and similar across priors so the MPM
does not seem tohave any problems m discarding
correlated covariates that arenot associated with the
response variable. The Bayes factors based on jomt
inclusion indicators lead to a correct conclusion 99-100%
of the time.

Zellner’s g-prior and collinearity: In the previous
simulation studies and real data analysis, Zellner’sg-prior
(Zellner, 1986) has been shown to be most affected. In this
study, we explore this prior further with empirical and the
oretical toy examples to get a better understanding of its
behavior under collinearity. Zellner’s g-prior and its
variants are widely used for the model specific parameters
in Bayesian variable selection. A key reason for the
popularity 18 perhaps its computational tractability n
high-dimensional model spaces. The choice of g is critical
i model selection and a variety ofchoices have been
proposed in the literature. Tn this study, we focus on the
unit information g-prior with g = n, in the presence of
strong collinearity. Letting X denote the design matrix
under the full model, we assume that the columns of X
have been centered to have mean 0 and scaled so that the
norm of each columnis vn, as in Ghosh and Clyde (2012).
For the standardizeddesign matrix, X'X is n times the
observed correlation matrix ofthe predictor varables.
Under model vy, the g-prior is given by:

B0l ) ctlip “)

We first explain why the information contained in this
prioris in strong disagreement with the data, for the
scenarios considered previously. For simplicity of
exposition, we take a small example with p = 2 and denote
the sample correlation coefficient between the two
covariates by r. For given g and , the prior variance of Py

i the full model ¥ = (1, 1) 18 given by:

gy {1 ]
ol

When r = 1, the prior correlation coefficient between
B; and B; is -t =™'. Thus, the g-prior strongly encourages
the coefficients to move in opposite directions when
the covariates are strongly positively correlated.
Krishna et al. (2009) gave similar arguments for not
preferring the g-prior inhigh collinearity situations. An
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effect of a prior distribution may be better understood by
examining the posterior distribution that arises under it.
Now let Y¥=1f, +XvB, where:

BU :?:iYi/n
i=1

3

A — -1 51
BYi(XYXY) XY

are the ordinary least-square estimates of [, and [,. Let
the regression sum of squares for model y be s, = Y08, 77

and the total sum of squares be s8R, =i(x}l_f)z . Then, the
coefficient of determination (Christensery, 2002). For model
v is R?, = SSR,/SST. When, v is the null model with only
the tercept term, Yy = 1Y, thus its SSR, = 0 and R2Y =0,
1n this special case. The marginal likelihood forthe g-prior
can be calculated analytically as Eq. 5, where:

b= )

denotes the number of covariates in model y (excluding
the intercept) and the constant of proportionality does
not depend ony Eq. 5 (Liang et al 2012). We assume
throughout that we have a discrete uniform prior for
the model space so that p(y ) = 1/2° for all models. For
exploration of none numerable model spaces, MCMC may
beused such that p(y|Y) 1s the target distribution of the
Markov George and McCulloch (1997)
discussed fast updating schemes for MCMC sampling
with the g-prior.

cham.

Next, we consider a small simulation study for p = 3
with strong collinearity among the covariates so that, we
can explicitly list each of the 2° models along with their R
values and posterior probabilities to demonstrate the
problem associated with severe collinearity empirically.
We consider some toy examples to explain this problem
the oretically and hence, obtain a better understanding of
the properties ofthe MPM. For our theoretical examples,
we will deal with finite and large n under conditions of
severe collinearity. Our results complement the results of
Fernandez et al. (2001) who showed that model selection
consistency holds for the g-prior with g = n. Their result
implies that under appropriate assumptions, p(y|Y) will
converge to 1 in probability, if vel 15 the “true™ model. Our
simulations and theoretical calculations demonstrate that
under severe collinearity the posterior distribution over
models may become multimodal and very large values of
n may be needed for consistency to take effect.
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RESULTS

Simulated data for p = 3: We generate lughly correlated
covariates by sampling a vector of n standard normal
variables, say z and then generate each of the covariates
by adding another vector of n independent normal
variables with mean O and standard deviation 0.05 to z.
This results n pairwise correlations of about 0.997 among
all the covariates. We set the mtercept and the regression
coefficients for all the covariates equal to one and
generate the response variable as in model Eq. 1 with
¢ = 1/4. We look at a range of moderate to extremely large
sample sizes in Table 3. For each sample size n, a single
dataset is generated and the same data generating model
is used for all n. The differences in R values for a given
model across different sample sizes 13 due to sampling
variability and it stabilizes to a common value when
n is large.

Table 3 shows that high positive correlations among
the important covariates lead to similar R* values across
all non-null models. For the g-prior, this translates into
high posterior probabilities for the single variable models,
inspite of the full model being the “true” model. The full
model does not have a lugh posterior probability even for
n = 10", finally posterior consistency takes effect when n
is as large as 10°. For n=1000, cne model usually has a
high posterior probability but under repeated sampling
there 1s considerable variability regarding which model
gets the large mass. We run the experiment a second time
to illustrate the sampling variability and report the results
in Table 4.

Finally, Table 5 studies the posterior inclusion
probabilities of covariates corresponding to the data sets
generated n Table 3. We find that forn = 25 and n = 100,
the margmalin clusion probabilities are all smaller than 0.5
so the MPM will be the null model. However, for all values
of n, the joint inclusion probability that at least one
of the correlated covanatesis included in the model 1s
1-p((0,0,0) |Y)=1. This suggests that the jomt inclusion
probabilities are still effective measures of importance of
covariates even when the MPM or the HPM are adversely
affected by collinearity.

Even though, the HPM is not the “true™ model, 1t will
very likely be effective for predictions in this high
collinearity situation because it never discards all the
important covariates. When the main goal 13 prediction,
whether the “true” model has been selected or not may be
irrelevant. However, sometimes it may be of practical
interest to find the covariates associated with the
response variable as in a genetic association study. In
this case, it would be desirable to select the “true” model
for a better understanding of the underlying biological
process and both the HPM and the MPM could fail to do
so under high collinearity.

In the following subsections, we first mtroduce a few
assumptions and propositions and then conduct a
theoretical study of the p = 2 case followed by that for the
general p case.

Assumptions about R’ and collinearity: First note
that for the mull model Y = (0, 0, .., 0Y, we have

Table 3: Simulation study for p 3, to demonstrate the effect of collinearity on posterior probabilities of models; the posterior probabilities of the top three

models appear in bold

Ry p(Y[Y)
Y n=25 n=102 n=10¢° n=10* n=10° n=25 n=10 n=1¢ n=10* n=1¢
(0,0,0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0,0, 1) 0.736 0.582 0.666 0.691 0.691 0.274 0.144 0.548 0.000 0.000
(0,1,00 0.734 0.589 0.665 0.691 0.691 0.253 0.329 0.086 0.018 0.000
01,1y 0.736 0.590 0.666 0.692 0.692 0.054 0.035 0.026 0.909 0.000
(1,0,00 0.738 0.591 0.665 0.690 0.691 0.293 0.398 0.282 0.000 0.000
1,0, 1) 0.738 0.592 0.666 0.691 0.692 0.058 0.047 0.040 0.000 0.000
(1,1,0) 0.738 0.591 0.666 0.692 0.692 0.057 0.041 0.017 0.046 0.000
a,1,1) 0.738 0.594 0.667 0.692 0.692 0.011 0.006 0.001 0.026 1.000

Table 4: Replicate of simulation study for p = 3 with collinearity in the design matrix, to demonstrate the effect of sampling variability; the posterior

probabilities of the top three models appear in bold

Ry p(y[Y)
Y n=25 n=102 n=1¢ n=10¢ n=1¢ n=25 n=10¢ n=1¢° n=10* n=1¢
(0,0,0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0,0,1y 0.612 0.759 0.691 0.685 0.691 0.204 0.254 0.017 0.000 0.000
(01,00 0.629 0.761 0.693 0.685 0.691 0.332 0.344 0.915 0.000 0.000
01,1y 0.643 0.761 0.693 0.686 0.692 0.097 0.036 0.032 0.061 0.000
(1,0,0) 0.617 0.760 0.690 0.685 0.691 0.231 0.293 0.004 0.000 0.000
(1,0,1y 0.617 0.760 0.691 0.686 0.692 0.045 0.032 0.001 0.175 0.000
(1,1,00 0.633 0.761 0.693 0.686 0.692 0.072 0.037 0.029 0.609 0.000
(1,1,1) 0.643 0.761 0.693 0.686 0.692 0.019 0.004 0.001 0.155 1.000
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Table 5: Effect of collinearity on posterior marginal inclusion probabilities
of covariates corresponding to the simulation study reported in

Table 3
Ry
Y n=25 n=102 n=1¢ n=1¢ n=10°
piyil=1Y)1 0.419 0.492 0.341 0.072 1.000
pi¥i2=1]Y) 0.375 0411 0.130 1.000 1.000
pi¥i3=1Y) 0.397 0.232 0.615 0.936 1.000

R, = 0 by definiion To deal with random R’

for non-nul models, we make the following

assumptiorn:

Assumption 1: Assume that the “true” model is the full
model and that for all sample size n and for all non-mall
models vy with probability 1.

Proposition 1: Tf Assumption 1 holds then for given =0
and for g = n sufficiently large, the Bayes factor for
comparing ¥y = (0,0, ..., Qandy=(1,0, ..,
smaller than with probability 1. The proof 15 given in
Appendix 1. This result implies that the Bayes factor:

0)' can be made

(6)

with probability 1 if the specified conditions hold. For
a discrete uniform prior for the model space that is
p (v) = 172 for all models vy, the posterior probabality of
any model y may be expressed entirely in terms of Bayes

(vl )

P(V‘Y)’(ZWP Y\Y Uzp
(YY) _
(Zyerp(Y‘Y

(Zyerp(Y‘Y)
p(Y]y)

factors as:

Y|y
Y‘y
BF(y: y#)

Zvel" ( Y*)

(7

where, y*jel" (Berger and Molma, 2005). Taking v = (0, 0,
S Mandy*=(1,0, ..., 0yin BEq. 6 and 7, for large enough
n, we have the following with probability 1:

(0,0,...,0)’ &)

p(v Y)=0

As the null model receives negligible posterior
probability, we may omit it when computing the
normalizing constant of p(y|Y) that 1, we may compute
the posterior probabilities of non-null models by
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renormalizing over the set I'-{(0, 0, ..., 0)} instead of I'. We
provide a formal justification of this approximation in
Appendix 2.

We now meke an assumption about strong
collinearity among the covariates so that R’ for all
non-null models yel™-{(0, O, ..., 0} are sufficiently close to
each other with probability 1.

Assumption 2: Assume that the p covariates are highly
correlated with each other such that the ratio:

l+n(1-R,.)

(1+n(1-R. ){(~(n

-1))12)

can be taken to be approximately 1 for any pair of distinct
non-mull models v and y' with probability 1. The above
assumption is not made in an asymptotic sense, instead
it assumes that the collinearity is strong enough for the
condition to hold over a range of large n but not
necessarily as n-«. One would usually expect a group or
multiple groups of correlated covariates to occur, instead
of all p of them being highly correlated. This simplified
assumption is made for exploring the behavior
theoretically but the phenomenon holds under more
general conditions. This has been already demonstrated
in the simulation studies where a subset (of varying size)
of the p covariates was assumed to be correlated rather
than all of them. Owr empirical results suggest that this
assumption will usually not hold when the correlations are
smaller than 0.9 or so. Thus, it will probably not occur
frequently but cannot be ruled out either as evident from
the real data analysis. We next study the posterior
distribution of 2° models for an example with p = 2 highly
correlated covariates and extend theresults to the general
p scenario in the following,.

Collinearity example for p =2: Under assumptions 1 and
2 and the discrete uniform prior for the model space, p(y)

= 1/2°, the posterior probabilities of the 2° models can be
approximated as follows with probability 1:

(0.0)[¥ )p(y == 0P(y = ({0.1)

)=

)=

2 &)
)=0

P(y=(10) P(Y =(L1)

1
5

The detailed calculations are given in Appendix 3 and
the results m Eq. 9 have the following implications with
probability 1.

The marginal posterior inclusion probabilities for
both covariates would be close to 0.5, so the MPM will
most likely mclude at least one of the two important
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covariates which happened in all our simulations. The
prior probability that at least one of the important
covariates is mcluded is 1-p(y = (0, 0) = 1-(1/2Y* = 3/4. The
posterior probability of the same event 15 1-p(y = [Y)=1 by
Eq. 9. Let H, denote v = (0, ) and H, denote its
complement. Then the prior odds P(H,)/P(H,) = (3/4)/(1/4)
= 3 and the posterior odds P(H,|Y¥P(H,|Y) 13 expected to
be very large because P(H,|Y)=1 and P(H|Y)=0 by Eq. 9.
Thus, the Bayes factor BF(H,: H;) (P(H,/Y)
PHLYIDAPH,/(PH,))) will be very large with
probability 1, under the above assumptions.

Collinearity example for general p: Consider a similar
setup with p lughly correlated covariates and y = (1, 1, ...,
1)” as the “true” model. Under Assumptions] and 2, the
following results hold with probability 1 which 1s
mnplicitly assumed throughout this section. For large o,
under Assumption 1, the nullmodel has nearly zero
posterior probability by Eq. 8, so it 18 not considered in
the calculation of the normalizing constant for posterior
probabilities of models as before. Under Assumption
2, taking g = nin Eq. 5, all (2°-1) non-mullmodels have
the term {1+n (1-R.)}<(n-1)/2 (approximately) incommon.
Tgnoring common terms, the marginal likelihood forany
model of dimension p, is approximately proporticnal to
(1+n) n-py-1/2. Given n, this term decreases as p,
ncreases, so the models with p, = 1 will have the highest
posterior probability and the posterior will have p modes
at each of the one dimensional models. The posterior
mnclusion probability for thejth covariate 1s:
F

IDAGAE

oY ep(Yly)

Y ., B
. FETia
Yye -{{0.0...0) "

5o

P py !

: [P { (14 n)w}

V=l pY 2

where, the last approximation is due to assumption 2
regarding collinearity. The expression in Eg. 10 follows the

fact that all p,-dimensional models have the marginal
likelihood proportional to(14n) n-py-1/2 2 approximately

p|y;-1Y

(10)

P
Pyl

)

(using assumption 2 in Eq. 5), there are altogether (p/p,)
such models and exactly (p-1/p,-1) of these have v, = 1.
Dividing the numeratorand denominator of Eq. 10 by
(1+n)"**, we have:
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(P-1ge (Y -1))

P+ vy (Par Y)

(54mg |¥) = (14 Sy ) = |

where, the last approximation follows for fixed p and
sufficiently large n as the terms in the sumover p, (from 2
to p) involve negative powers of (1+n). This result
suggests that the MPM will have greater problems due to
collearity for p>3 compared top = 2.

Let Hy: v =(0,0, ..., 0) and H,: complement of H,.
Because, the prior odds P(H,)/P(H,) = (2°-1) 1s fixed (for
fixed p) and the posterior odds 1s large for sufficiently
largen, the Bayes factor BF(H,: H;) will be large. This
useful result suggests that while margmal inclusion
probabilities (marginal Bayes factors) may give misleading
conclusions about the importance of covariates, the joint
inclusion probabilities (Joint Bayes factors) would
correctly indicate that at least one of the covariates
should be included in the model. These results are in
agreement with the simulation studies and provide a
theoretical justification for them.

DISCUSSION

Based on the empirical results, it seems preferable to
use independent priors for model matrices with high
collinearity instead of scale mixtures of g-priors. The
MPM is the model that includes all covariates with
posterior marginal inclusion probabilities >0.5 so it is easy
to understand, straight for ward to estimate and it
generally has good performance except in cases of severe
collinearity. As the threshold of 0.5 may not be
appropriate for highly correlated covariates
commend a two-step procedure: using the MPM for
variable selection as a first step, followed by an
inspection of jomt inclusion probabilities and Bayes
factors for groups of correlated covariates as a second
step. For complex correlation structures, it may be
desirable to incorporate that information in the prior.
Krishna et al. (2009) proposed a new powered correlation
prior for the regression coefficients and a new model
space prior with this objective. The posterior computation
for their prior will be very demanding for high dimensions
compared to some of the other standard priors like

Wwere

independent normal priors used m this study. Thus,
development of priors along the lines by Krishna et al.
(2009) that scale well with the dimension of the model
space 1s a promising direction for future research.

An interesting question was raised by the reviewer:
should we label all the covariates appearing in the “true”
model as important even in cases of high collinearity. The



Res. J. Applied. Sci., 11 (7): 428-438, 2016

definition of important covariates largely depends on the
goal of the study. For example, in genetic association
studies there could be some highly correlated genetic
marlers, all associated with the response variable and the
goal of the study 1s often identifying such markers. In this
case, they would all be deemed important. Tn recent years,
statisticians have focused on this aspect of variable
selection with correlated covariates where itis desired that
correlated covariates are to be simultaneously included in
(or excluded from) a model as a group. The elastic net by
Zou and Hastie (2005) is a regularization method with
such a grouping effect. Bayesians have formulated priors
that will induce the grouping effect (Krishna et ai., 2009,
Liuet al., 2014). In some of these studies, the researchers
have shown that including correlated covariates in a
groupwith appropriate regularization or shrinkage rules
may unprovepredictions.

If the goal is to uncover the model with best
predictive performance, then mcluding highly correlated
covariates simultaneously m the model may not
necessarily lead to the best predictive model. The MPM
1s the optimal predictive model under squared error loss
and certain conditions. For the optimality conditions to be
satisfied, the design matrix has to be orthogonal in the all
submodels scenario and certain types of priors must be
used. Ingeneral, the MPM does quite well under
nonorthogonality too but may not do as well under high
collinearity. One possibility would be to find the model
with best predictive ability froma Bayesian point of view,
measured by expected squared error loss with expectation
taken with respect to the predictive distribution (e.g.,
Lemma 1) (Barbieri and Berger, 2004). This would be
feasible for conjugate priors and small model spaces that
can be enumerated. For large model spaces, one could use
the same principle to find the best model among the set of
sampled models. However, for general priors when the
posterior means of the regression coefficients are not
available in closed form, the problem would become
computationally  challenging. Thus
applications, it would be good practice to report

, for genuine

out-of-sample predictive performance of both the HPM
and the MPM. When, finding the best predictive model in
thelist of all/sampled models 1s computationally feasible
one could report it as well.

Appendix 1 (proof of proposition 1):
Proof. To simplify the notation let R* =R? for ¢ = Then putting g = n and
using the expression for marginal likelihoodof the g-prior given in Eq. 5 we
have:

BF y=(0,0,...,00:y=(1,0,..., 00 (A’])

Taking the logarithm of (A.1), the following result holds with
probability 1, by assumption 1:

log(BF(y:(O, 0,..,0):y=(1,0,..,0))
log((1+n){1/2(1-n /(1+nR%)))
=1/2lag(1+n)+({n —1})/ 2log(1-n (n +1)(R)
<1/2log(1+n)+((n-1)}/ 2log(1-n/(n+1))(5)

As n goes to infinity, the first term in (A.2) goes toeat a
logarithmicrate in n. Logarithm is a continuous function so goes to
log (1-81) as n goes to infinity. Because 0<31<1, we have log (1-81) <0.
This implies that the second term in (A.2) goes to —-at apolynomial rate in
n, of degree 1. Thus, as n-- with probability 1:

log (BF(y = (0,0, ..,00: y=(1, 0, ..., 0)"))=-o0 (A3
BF = (0,0, ..., 00 (y = (L, 0, ..., 00"} (Ad

From (A.3) it follows that for sufficiently large n, we can make:
BFy =0, 0, ..., 0, v =(1,0, ..., 0 for given =0 with probability 1.
This completes the proot.

Note that the above proof is based on an argurment where we consider
the limit as n--. However, for other results concerning collinearity, we
assume that n is large but finite. Thus, we avoid the use of limiting
operations in the main body of the article to avoid giving the reader an
impression that we are doing asymptotics.

Appendix 2 (justification for omission of the null model

for computing the normalizing constant):

Yo (v¥iy) we first establish the following lemma. This shows that for
camputing a finite sum of positive quantities, if one of the quantities
isnegligible compared to another, then the sum can be computed accurately
even if the quantity with negligible contribution is omitted from the
SUm.

Lemma A.1: Consider a,>0, i = 1, 2, ..m. If a,/a2, as n - then

Ejnzzam . L

m

1 Bin

Proat.
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Corollary A.l. If assumption 1 holds, then given n=0,
how ever small, for sufficiently large n, we can make

(1- (y€—{(0,0,... O NP(Y[y)/ E(ye p)(Y|y)) with probability 1. Proof we
have p(Y[v)>0, yel' p(Y]y = (0, 0, ., O)V(Y|y = (1, 0, ..., 0)°) = as
n~= with probability 1, by (A.3). Then as n~< we have the following with
probability 1, by Lemma A.1:

ng—{(ﬂ,ll P (Y|y) 1

2p(Yy)

The proof follows immediately:

Appendix 3 (calculation of posterior probabilities of all 2*

models for p = 2): The posterior probability of the null model was
shown to be approximately, zero in Eq. 8 We derive the posterior
probabilities of thenon-null models under assumptions 1 and 2 here. For any
non-null model yet- {(0, 0)_}:

p(y)P(Y]y) _
2 P(Y]Y)

1

)

[E%{ﬁ}p(ﬂy)} _m(m_%‘im))

p(Yly)=

with probability 1. The last approximation in (C.1) follows from Corollary
A.1l in Appendix 2. We will use the expression in (C.1) to derive the
posterior probabilities. First note that under assumption 2 the term
{1+n (1-Ry*)/<(N-1/2)}in the expression of marginal likelihood p(Y]y) in
Eq. 5is approximately the same across all non-null models with probability
1. Thus, this term does not have to be taken into account when computing
the posterior probabilities by (C.1). Then by Eq. 5 (C.1) and substituting
g =n, we have with probability 1:

p(r=(01)7¥)~
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Dividing the numerator and denominator of the right-hand side of
(C.2) by (1+n)*272 (0, 1) Y=1/(2+(1+n)(-1/2)) P(y = 1/2) for large enough
n with probability 1. Under assumption 2, we note that Py = (0.1)T)=1/2
would have an identical expression as p(y = (0.1)Y). Hence,
p(y = (1.MY)=1 for large enough n with probability 1. We finally derive
p(y =(1.1)_|Y) in a similar manner as follows:

for large enough n with probability 1. [Received May 2013. Revised March
2015].
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