Research Journal of Applied Sciences 11 (9): 851-857, 2016

ISSN: 1815-932X
© Medwell Journals, 2016

Predictive Modelling for Reservoir Water Level

Siti Rafidah M-Dawam and Ku Ruhana Ku-Mahamud
Faculty of Computer Sciences and Mathematics, UmversitiTeknologi MARA, Kedah, Malaysia
School of Computing, College of Arts and Sciences, Universiti Utara Malaysia,
Sintok, Kedah, Malaysia

Abstract: Neural Network (NIN) has been the most popular technique used in predicting Reservoir Water Level
(RWL.). However, NN is a black-box modelling technique where the model can be established without
knowledge of the mathematical relationship between the inputs and the corresponding outputs. Most

researches on reservoir water release applied the NIN techmques using discretized data. To discover the current
Reservoir Water Level at time t (RWT.,) in relation to the previous rainfall event, this paper proposed a predictive

modelling for RWL using regression and the temporal pattern of both RWL and rainfall. The sliding window
technique has been used to segment the temporal data into various slices. The finding shows that the best

mput scenario for the current RWL 1s one day delay for RWL and two days delay for ramfall; comparing this
to the actual data, the model has an error of 0.1628%. The model can be used to guide the reservoir operator

predicting the present and immediate decisions on reservoir water release, especially in the absence of the

supervisor or during emergency situations.
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INTRODUCTION

The growing relevance of Reservoir Water Release
(RWR) 18 a consequence of its social repercussions and
significant flood consequences. Reservoirs can bring two
kinds of threats; during heavy rainfall that could cause
severe flood and during drought that could jeopardise
the water supply for demestic, industrial and agricultural
purposes (Chiang and Tsai, 2012). Making decisions on
RWR is critical and very much influenced by the changes
of RWL. Studies on RWL decisions have demonstrated
the ability in predicting RWR (Ashaary ef al, 2015;
Mokhtar et al., 2014; Rani and Parekh, 2014). Modelling
the previous reservorr operator’s decisions on water
release can be used as guidance for the present
decision. Another related activity to reservoir 1s
reservoir  operation which has been defined as
“establishing and implementing decision rules that guide
the amount of water to be released from the reservoir at
any given point of time” (Stam et al., 1998) which is also
known as reservoir operating policy or centrol
strategy (Moeini et al., 2011). In this study, reservoir
operations refer to the decisions of gate opening or

closing for RWR. Reservoir operations comprise many

components such as inflow, outflow, water storage level
and gate operations. Inflows to the reservoir can be
in terms of rainfall (Afshar and Salehi, 2011) and
stream{low.

Reservorr outflows can be m two forms: uncontrolled
spillways and gated spillways. When RWI. exceeds the
fully supply level, it discharges tlrough the uncontrolled
spillways. The gated spillways are controlled by
certain reservoir operating rules which are stagnant and
disregard the dynamic nature of the hydrology systems
(Tshal et al., 2011a). Therefore, a non-structural approach
such as classifying and/or predicting the reservoir mflow
is crucial to facilitate RWR or gate opening decision. In
most reservoir operations, the decision to sustamn or
release a certain amount of water has been laid down in
theiwr Standard Operating Procedure (SOP) where certain
parameters need to be considered. However, the
effectiveness of the SOP and operating policy are affected
by several factors such as sedimentation, water usage,
climate changes and whbanisation. Eventually, the
decisions or judgements made are subjective, uncertain
and vague, based on the operators’ intuition and previous
learning experiences. Therefore, the reservoir operating
policy needs to be periodically re-evaluated and updated
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to improve the reservoir operation. There is an urgent
need to model the reservoir operators’ previous
experience facing such difficult These

experiences give significant information on the RWR

situations.

decisions as the operators may involve in turnover and
mobility processes.

In RWR decisions, the data 1s in the form of temporal
sequences where time 1s critical information related to
each data whether in the form of month, day or hours
(Mahamud ef af., 2009). The changes in the patterns of
the data can influence certain decision-making. Decision
rules captured from the patterns provide invaluable
mformation which can assist in making future decisions.
The Temporal Data Mining (TDM) technique is
required to wmcover the values of the attributes mvolved
from temporal sequences representing temporal
mformation related to certamn decisions by the algorithm
formulation. The significant time delay between the cause
of event and the actual event needs to be captured
accurately.

This study focused on modelling RWIL using
regression based on the temporal data of RWL and rainfall
in particularly on the reservoir’s gate opening decisions.
These temporal data were sliced using the sliding window
technique to portray the delay between the rainfall and
the increase of RWIL. Then, the study applied the
regression technique to discover a previous RWL and
two-days of previous rainfall are the best predictor to the
reservolr’s gate opering decisions.

Literature review: Reservoir operation decisions are
challenging and complex, especially during flood and
drought events due to unpredictable nflow such as
rainfall (Sattari ef al., 2012). Thus, a few researches have
focused on non-structural approaches predicting
reservolr mflows. However, during flood or drought, the
decision on RWR is not only based on the availability of
water inflows but also on the previous release, demands,
time, etc. Besides daily rainfall, several researches also
considered water level as an input in the multipurpose
reservorr forecasting model (Moein et af., 2011). Rainfall
(hydrological data) and water level are found to be
correlated in the flood prediction model (Mahamud et al.,
2009).

Many literature conducted on the RWR operation
have utilized ramnfall data and RWL as inputs (Nwobi and
Igboanugo, 201 3; Rani and Parelh, 201 4) and have applied
different methods and techmques of Artificial Intelligence
and machine learning (Afshar and Salehi, 2011; Afshar,
2012, Alemuet al., 2010, Wei, 2012). Only a small number
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of researches conducted on RWR decisions highlighted
on the time delay between the rainfall and the increase of
RWL.

Ishak et al. (201 1b) proposed the Reservoir Intelligent
Decision Support System in the crisis condition. The
system has three assessment,
forecasting and decision models. In this model, the sliding

models:  situation
window method 13 used to mine reservor temporal
patterns from the operational data as well as the previous
experience of the reservoir operator. Results showed eight
days’ time lag relating to upstream rainfall and RWTL. This
study utilized NN to forecast and to classify RWL and
concluded that the finest ANN model was 24-15-3.
However, after two years, the model recommended five
days’ time lag with an 8-23-2 ANN model with a
0.007085% error. Nonetheless, the study utilized the
discrete data of current RWL, tomorrow RWL and the
changes of RWL as inputs in predicting the closing or
opening of reservoir gates (Ishak et al., 2012).

Afiq forecasted the daily RWL of the Klang reservorr,
Malaysia using Type 2 SVM regression. The input
variables are ramfall and RWL wliuch were used to
determine the best time lag. Two days of rainfall and RWT.
were selected as the best time lag model with 1.64% error.

Nwobi-Okoye and Igboanugo developed Artificial
Neural Network (ANN) models for predicting the water
levels at the Kaiyi Dam which supplies water to Nigeria's
largest hydropower generation station using a 10 year
record of the daily water levels at the dam from 2001-2010.
The ARTMA model with a relative error of 0.039% had the
best prediction.

Rani and Parekh (2014) concluded that ANN using
feedforward back propagation 1s an appropriate predictor
for real-time water level forecasting of the Suldu Reservorr,
India. The inputs are the daily data of inflow, RWT, and
RWR and the best time lag 1s 10 day with a 0.82%
error.

Molkhtar ef ad. (2014) applied NN to predict RWTL. and
concluded a 5-25-1 NN model as the best architecture. The
study found out that five days’ observations of RWL are
significant for the RWR decision with a 0.038756% error.

Ashaary et al (2015) proposed a 4-17-1 NN
architecture in forecasting the change of RWL stage. The
changes and stage of RWL were used as the input
patterns instead of the real value of RWIL.. The research
showed that two days of delay have affected the changes
in the stage of RWL..

An effective and timely method for predicting RWL
can help in water-use formulation and scheduling for
domestic, municipal and agricultural uses as well as in
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Table 1: 8liced Reservoir Water Level (RWL)

Date RWL, RWL,; RWL, RWL, RWL,4 RWL.. RWL... RWL,, RWL,.
12-Feb-97 20275 20255 29220 29.165 29130 29105 28955 28.950 28.930
13-Feb-97 29.335 20275 29255 29,220 29165 29.130 29.105 28.955 28.950
14-Feb-97 29.335 29.335 29275 20255 29220 29.165 29130 29,105 28955
15-Feb-97 20.280 29.335 29.335 20275 29.255 29.220 29.165 20,130 29.105
Table 2: Sliced Averaged Rainfall Data (RF)

Date RF, RF,., RF,., RF,.3 RF,.. RF,.; RF,.q RF,.; RF.s
12-Feb-97 20.25 7.330 5.380 13.00 0.000 46.25 24.50 10.00 16.17
13-Feb-97 13.88 20.25 7.330 5.380 13.00 0.000 46.25 24.50 10.00
14-Feb-97 8125 13.88 20.25 7.330 5.380 13.00 0.000 46.25 24.50
15-Feb-97 1.00 8.250 13.88 20.25 7.330 5.380 13.00 0.000 46.25

disaster monitoring, response and control in areas prone
to floods. The number of feature groups and the number
of elements m each feature group used as mputs greatly
mfluence the forecasting of RWL accurately (Rani and
Parekh, 2014).

Study area: In this study, the TinahTasoh reservorr,
situated in the northern part of Malaysia was used as a
case study. The TimahTasoh reservoir is one of the
largest multipurpose reservoirs in northern Peninsular
Malaysia. It serves as a reservolr for flood mitigation as
well as water supply and recreation. Water from
TimahTasoh is used for domestic, industrial and irrigation
purposes. The reservoir operation data from 1997 until
2006 1s collected from the Department of Irrigation and
Drainage (DID) which 15 in charge of monitoring and
managing the reservoir. The data consists of operational
and hydrological data. The operational data has the daily
RWLs measured 1 metre (m) unit and the reservorr gate
opening decisions in terms of quantity, size and duration.
The hydrological data has the daily rainfall readings
measured in milimetre (mm), recorded from five gauging
stations.

Data preparation: Data preprocessing is often required
before using any data mining process to improve the
results” performance. In order to handle the missing value,
the mterpolation technique 1s used by computing:

10 = F(xg )+ (x =) ()
Where:

£

The missing value

f{x,) = The value before the missing value

X = The point of missing value

X, = The point of value before the missing value

fla) = The constant value before the missing value
f{b) = The constant value after the missing value

a = The constant point before the missing value
b = The constant point after the missing value
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The rainfall data is recorded daily through five
gauging stations. The data is averaged by the number of
stations that have rain based on:

total i
AveRF = otal rain

num_of stations with rain

Next, the change-point detection technique 1s applied
where there 1s a transition from gate closed to gate
opened. An initial total of 498 of gate opening decisions
were detected from 10 years of operation (1997-2006).
Once this change-point is detected, a window slice will be
formed which mcludes preceding t days according to the
window size to ensure the time delay captured as shown
in Table 1 and 2.

Once the rainfall and RWL data 1s ready, the TDM
technique is used to extract the temporal patterns of the
reservoir gate opening events. These temporal data
usually represent sequences of events which are usually
the impacts of certain causes. The temporal information of
RWL and rainfall is preserved by using a sliding window
techmque (Mokhtar e @l., 2014). Figure 1 and 2 show the
delaying effect of the ramnfall on RWL.

Next in this study, the data normalization process is
applied to the RWL data and RF data which were used as
the input data. The gate opening at RWL,, is used as the
target output. Data normalization is one of the
preprocessing procedures in data mimng where the
attribute data is scaled so as to fall within a small specified
range. In real application because of the differences in the
range of attributes’ values, one attribute might overpower
the other one. Normalization prevents the outweighing
attributes with a large range. The goal 18 to equalize the
size or magnitude and the variability of these
attributes.

This study applied the z-score normalization where
the values for the attributes of RWL (X) and RF (¥X) are
normalized based on the mean and standard deviation of

(30). A value of X is normalized to X, by computing:
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Fig. 2: Water level at TimahTasoh Reservoir for 10 year
Table 3: Sliced Reservoir Water Level (Normalized)
Date RT, R RF 5 RE} RE} 4 R, BT ¢ BT, 4 RT; .
12-Feb-97 29.275 0.592 0.475 0.323 0.262 0.253 -0.165 -0.1 -0.106
13-Feb-97 29.335 0.662 0.597 0.511 0.381 0.337 0.336 -0.083 -0.038
14-Feb-97 29.335 0.871 0.687 0.631 0.568 0.454 042 0.423 -0.021
15-Feb-97 29.28 0.871 0.875 0.699 0.687 0.638 0.537 0.507 0.486
Table 4: Sliced Averaged Rainfall Data (Normalized)
Date RF, RF, RF,.. RF.. RF, 4 RF.. RF s RF 5 RF,
12-Feb-97 20.25 -0.461 -0.617 -0.194 -1.041 1.938 0.559 -0.355 0.150
13-Feb-97 13.88 0.301 -0.502 -0.644 -0.194 -1.037 1.981 0.601 -0.305
14-Feb-97 8.25 -0.075 0.256 -0.528 -0.691 -0.200 -1.043 2.036 0.764
15-Feb-97 1.00 -0.407 -0.118 0.234 -0.563 -0.691 -0.193 -1.015 2.369
X¥_X Table 5: Three significant independent variables on RWIt
Xpew =———— Variables B Sig.
5 RWL,, 0.909* 0
Where: RF,, 0.003* 0
X = The mean of attribute RF. 0.002* 0

S = The standard deviation of the RWL attribute and
averaged rainfall.

The normalized values for RWLand RF are shown 1n
Table 3 and 4. This method of normalization 1s useful
because the actual minimum and maximum values of the
attributes are unknown.

MATERIALS AND METHODS

Multiple regression 1s used to explore the relationship
between one continuous dependent variable and a
mumber of independent variables or predictors (usually
continuous). This study applied multiple regression in
order to identify which slices of RWL and RF can best be
the mput predictors to predict RWL,.

The result showed that there is a statistically
significant difference mn three mdependent variables on R
at p<0.05 which are RWL,,, Rf,, Rf, as shown in
Table 5. However, the regression analysis requires certain
assumptions to be fulfilled First is to determine the
adequate sample size. A calculation of the sample size
proposed by Tabachnick and Fidell (2007) is used by
taking into account the number of independent variables
that will be used in this study, based on:

N=50+-8 m

where, m 18 the number of mdependent variables. In
this study, there are three independent wvariables
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Fig. 3: The predicted water levels as compared to the real water levels

and the sample size used is 498 which exceeds
the minimum recquirement for the sample size which is 74.

Next 1s to test on the multicollinearity problems
among the independent variables by using a Spearman’s
correlation coefficient. According to Pallant (2007),
multicollinearity exists when the independent variables are
highly correlated (r = 0.9 and above). In this study, the
correlation coefficients of three mdependent variables are
below 0.9. There was a positive correlation between the
three independent variables, RWL, . RF, |, RF,,, r = 0.894,
0.119and 0.261, respectively and n= 498, p<0.005 with the
higher the previous water level and RF associated, the
more likely RWL, increases.

After data collection, the RF and RWL sets are
cleaned up from outliers. According to Tabachnick and
Fidell (2007), outliers are those withstandardized residual
values above 3.3 (or <-3.3). Outliers are checked by
inspecting the Mahalanobis distances that are produced
by the multiple regression analysis. A critical Chi-square
value 1s determined using the number of independent
variables as the degree of freedom. Tn this study, the

critical value is 16.27 for three independent variables
(Tabachnick and Fidell, 2007). Thus, the number of sample
1s reduced from 498 cases to 124 cases after applying the
Mahalanobis distances for removing the outliers for three
times. Figure 3 shows the normality assessment and
transformation of data. (A)-(C) The shape of curves
formed by the points is not linear, nor does 1t remotely
match the straight diagonal which both indicate that the
data is not normally distributed. (D) A P-P Plot of normally
distributed data where a majority of the data points lie
along the diagonal line.

RESULTS AND DISCUSSION

From the conducted experiments, the RWL, can be
calculated as:

RWIL, = RWL, +RF, .+ RF,,

A regression model for RWL can be calculated as:
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Fig. 4: The predicted water levels as compared to the real water levels

RWL = (2.571 }+0.909)R WL, +
(0.003)RF, +(0.002)RF, ,

The RWL, for TimahTasoh can be explained by one
day of previous RWL (RWL,,) and two days of
previous rainfall (Rf,, and RF, ;) with a 0.1628% error. The
actual and predicted observation on RWI. can be seen
m Fig. 4.

Several RWL patterns/models have been tested. The
results in terms of error rate are shown in Table 4. Model
A which was proposed by Mokhtar ef af. (2014), utilized
five windows of RWL, resulted 11 0.093543 error. Model B
by Afiganticipated two days of RF and RWT,, resulted in
0.082624 error. Model C by Ishak et al. (2011b) suggested
eight days of RF, resulted m 0.253844 error and Model D
by Norwawi et al. (2005) recommended two days of RF,
resulted 1n 0.265880 error.

Based on the result, the predictive model can be
considered good where the error is <10% with less
number of IVs. The predicted model 1s considered reliable
and can be used by reservoir operators because the
predicted RWL lines are very sumilar to the real RWL mn
most events.

CONCLUSION

Thus study has revealed the applicability of the TDM
technique for extracting decision patterns from the
historical data. A predictive mathematical model can be
derived from the extracted patterns where the future
decisions can be made by the reservoir operator besides
relying on weather events. The sliding window techmque
has been successfully applied on RWL which can lead to
RWR. This information is vital for the reservoir
managerment to plan the early water release.
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