
Cost Effective Approach of Complex Web Service Composition

B. Muruganatham, Sahil Babel and Neha
Department of Computer Science and Engineering, SRM University, Chennai, India

Key words: Failure probability, Quality-of-Service
(QoS), web services, response time, execution duration

Corresponding Author:
B. Muruganatham
Department of Computer Science and Engineering, SRM
University, Chennai, India

Page No.: 17-22
Volume: 15, Issue 1, 2020
ISSN: 1815-932x
Research Journal of Applied Sciences
Copy Right: Medwell Publications

Abstract: Web services are gaining importance and are
often used as a standard approach for integrating diverse
miscellaneous services often distributed over the network.
Hence, it necessitates attaining high levels of reliability
and availability without being affected by any service,
network or infrastructure failures. To accomplish this, we
propose an efficient mechanism which will narrow the
plausibility of fault detection by dynamic web service
selection among similar services. The Quality-of-Service
(QoS) can have an important effect on web service
composition service reliability. In this study, we perceive
the rationale for the failure of the web services and
resolve it by considering the QoS attributes like response
time, execution time, etc. The proposed modeling
approach indicates a possible reduction in the failure
probability as well as a significant improvement in the
execution duration of the complex web services
composition. This has been proved through the results
achieved with an experimental setup.

INTRODUCTION

Web services composition are used to manage
business processes. It is dynamic in nature. Complex web
service composition can be framed by identifying and
integrating diverse web services distributed over the
network. Web services is a service offered to facilitate
communication between the service provider and service
consumer over the web. Web services can be defined and
published by the service consumer and it has been
discovered and invoked for completing the task by the
service consumer. Two or more web services combined to
complete a task is called composite web services or web
services composition. Reliability achievement is a big
issue in service oriented computing; it is not like
traditional standalone machine.

Web services are spread across the web which is
remotely developed and hosted making it difficult to

locate. It may also happen that the service becomes
unavailable without prior notice. Also, its performance
can dynamically change according to various reasons like
change in workload of servers, unstable network
connectivity or communication links, etc.

Faults may occur in service oriented systems due to
various reasons. There can be fault in its framework like
power fluctuations or any flaws made during the
designing and implantation phase such as any software
bug. The defect can also be introduced manually by the
administrators. There can also be an issue that the service
requested is not available or there is a very high response
time.

In this study, we present a methodology which will
detect the fault in the web service composition and then
optimize the results obtained by minimizing the faults.
For example, if a client requests for a set of services from
the server, for instance, a user wants to buy a book online.

17

Res. J. Applied Sci., 15 (1): 17-22, 2020

He will make a request and try to contact one of the
various servers available (like amazon.com, ebay.com,
flipkart.com).There can be a failure in the web service
invocation, for instance, the server may not be available
at that moment due to various reasons like maintenance or
server is down or the server might be taking a lot of time
to reply to the request or the particular requested web
service is not offered by the server. Hence, in such cases
to minimize this tendency of failure, we can redirect the
request to another server.

Service availability indicates whether a service is
available or not, i.e. Whether a response to the service
invocation has been successfully received. The response
time is the duration from the time the request has been
sent till the time the response has been received.

Literature review: In this section, first will rundown and
go through some of the related works and investigations
on QoS management and fault tolerance mechanism prior
to examining the affiliation amidst our research work and
standardization efforts for the web services composition
technique.

There are some previous researches on reliability
and fault tolerance and the evaluation of the existing
web service composition. Researchers[1] scrutinize the
predicament of employing the optimal and best strategy
for fault tolerance to build and establish a reliable service
oriented system by mapping the user requirements and
prerequisites. It also examines the fault tolerance policy
selection for the business processes which are
semantically homologous.

Various research experiments and investigations
have been carried out on the subject of QoS aims
selection of web services and composition. A QoS-aware
middleware platform[2] proposed and it reports the issues
of web services discovery from the repository for
composition to maximizing the satisfaction of users by
considering the QoS properties.

QoS management has been extensively studied and
analyzed in the horizon of web service composition
system[3, 4]. The primary concern of this research is on the
subsequent matters: QoS specification to acknowledge
characterization of functional performance and QoS
attributes. Researchers[5, 6, 2] discusses the QoS properties
providing the non-functional characteristics for web
service selection when more than one service is present
with similar and comparable properties.

 In Menasce[6] various QoS issues on web services
(Availability, response time, throughput, security
properties like authentication, confidentiality, data
integrity and non-repudiation) are discussed from the
point of view of the service provider and service user. It
states that the service users and providers need to be able
to engage in QoS negotiation. The providers should
monitor the load they receive from the users and should

check whether they meet the Service Level Agreement
(SLA). The user must also check the quality-of-service
they obtain.

In the fault tolerant infrastructure for web services is
studied which can be used for interoperability among
applications and for redistributing on the web with high
reliability and availability demands. It must provide a
crystal-clear fault tolerance for the clients. The principle
objective of this is to assure transparency in fault
tolerance for end users utilizing the active replication
technique.

In contemporary, there has been a growing interest in
processes which can be implemented by invoking
multiple web services. The client can cite their
preferences and constraints and based on this the selection
of services are dynamic in nature for service composition
and enforced by discovering the suitable services
available at the runtime[2, 5]. Negotiation techniques have
also been used to attain and come up with a practical and
reasonable solution.

A hybrid model is proposed to enhance the
performance of complex composite web services. With
the help of this the rate of failure can be computed and
also the reliability can be determined. However, this does
not work towards achieving the minimal error.

The works mentioned above do not aim towards
minimizing the probability of failure in web services
which has been taken into consideration in this study.

MATERIALS AND METHODS

Proposed model: In this section of paper, we begin by
first describing the architecture and its various entities.
The different QoS attributes for the web services are
discussed followed by the required algorithms.

Architecture: The service provider is accountable for the
providing the web services to the end users. The service
consumer is the client who is the end user or web
application making the request for the web services and
utilizing these services created by the service provider.
All the communication taking place will be tabulated in
the service register which will be later used for analyzing
purpose (Fig. 1).

The request analyzer will be calculating the amount
of time taken to transfer the request from the consumer to
the provider and to process this request. The response
analyzer will be calculating the time required to send the
requested web service from service provider to the service
consumer. The WS status will mention the status of the
service provider concerning the web service request.

The request will be sent to all the service providers
one at a time and this data will be stored in the service
register which will later forward its data to the fault
detector. It will be detecting the fault in the web service

18

Res. J. Applied Sci., 15 (1): 17-22, 2020

Fig. 1: Architecture diagram

invocation by various service providers which will be
used to calculate the failure probability. This result will
then be examined by the optimizer which will try to
minimize this failure probability previously obtained
by the fault detector. This can be done by
redirecting the request to another nearby web service
provider which will provide the similar homogeneous web
services.

The WS Invoker is used for invoking the web service
from the web service provider as instructed by the
optimizer and will then send this service to the web
service consumer.

Quality criteria for web services: In the present
scenario, there are multiple candidates available for web
services with similar functionalities. In such cases, QoS
attributes impart some non-functional features for
dynamic web service discovery. Based on the previous
research methods and experimental results[2, 5, 6], we
exemplify the following QoS attributes for the web
services:

Service availability: The service availability determines
the possibility of the end user to access the web service.
The value of service availability is calculated as the total
duration for which service is available during the last t
seconds.

Service execution duration: The service execution
duration is computed as the expected duration in seconds
required by the service consumer to send the request and
receive its results.

Service response time: The response time measures the
duration receiving the response from the server.

Service failure probability: Failure occurs if either at the
server side the request was not successfully executed or
when the end user does not receive its corresponding
response. Hence, the service failure probability is
computed as the ratio of the number of services which
were not successfully executed to the total number of web
services.

Algorithm 1; Sending request to the service provider:
Input: SP: service provider.
 WS: web service.
Output: request sent.
1. int SP Number = |SP|;
2. int WS Number = |WS|;
3. int ser=0;
4. for (j=0; j<SP Number; j++) do
5. ser++
6. for (i = 0; i<WS Number; i++) do
7. sendurl (ser, SP Number[j],WS Number[i]);
8. end
9. end

 In Algorithm 1, the web service consumer is sending
the request for the web service to the web service provider
one at a time. The ser is the service index for the service
provider which is being requested by the service
consumer.

Algorithm 2; Finding response time:
Input: SP: service provider.
 WS: web service.
Output: RT: response time
1. Open connection
2. int code: get response code
3. string response: get response message
4. long start time: current time of system
5. long response time: current time-start time
6. long x1: response time%1000
7. long x2: response time/1000
8. return response time

In Algorithm 2, the consumer bind with provider to
invoke the functionalities of web services. The response,
i.e., response code, response message from the network is
obtained. The response time is calculated as the duration
of the connection being established till it sends the
corresponding requested web service back to the service
consumer.

Algorithm 3; Fault detection:
Input: RT: response time
Output: F: failure
1. int lim: Time limit of RT
2. if (RT>lim) then
3. code = 408
4. response = Timeout
5. flag = true
6. else if (code = 404) then
7. flag= true
8. end
9. if (flag==true) then F = true
10. else F = false
11. return F

19

WS status

Response
analyzer

Request analyzer

Services consumer Services provider

Services
register

Web services

Fault detector

Optimizer

WS invoker

Res. J. Applied Sci., 15 (1): 17-22, 2020

In Algorithm 3, the failure can occur if the response
time exceeds time limit or if the web service is not
available. The 408 is the request timeout error. It is an
http status code which implies that the request the service
consumer sent to the service provider took longer than the
web service provider was prepared to wait.

The 404 is the Not Found Error Http status code. This
error is shown when the requested web service by the
service consumer is not available at the service provider.

Algorithm 4; Minimizing failure probability:
Input: SP: service provider.
 WS: web service.
Output: request sent.
1. int SP Number = |SP|
2. int WS Number = |WS|
3. for (i=0; i<WS Number; i++) do
4. for (j=0; j<SPNumber; j++) do
5. curService = WSi

6. curServer = SPj

7. Send request of curService to curServer
8. if (code == 200) then
9. break
10. end
11. end

In Algorithm 4, the request for the web service made
by the service consumer is sent to the service provider. If
due to any reason like the service was unavailable on that
service provider or its response time is exceeding the time
limit etc. another request will be made to send the same
service but this time to the next service provider. This will
ensure that the availability of web services increases and
hence there will be significant reduction in failure
probability.

Experimental setup: The experimental setup has various
computers or nodes acting as the server. The client will
send a request for a web service. This request will be
henceforth forwarded to the servers nearby one at a time.
There can be various causes of failure now based on the
Quality-of-Service (QoS) attributes as discussed in section
3 of this paper.

When the web service is unavailable on the server: In
this scenario, it may happen that the particular web
service requested by the service consumer is not available
with the service provider. This can be due to various
reasons like the server is down, network connectivity
issues, server maintenance is taking place or it may be
permanently shut down.

Service availability is the possibility that a service
invocation will be executed successfully with a response.
The value of service availability can be determined from
the former data of service invocations as the ratio of the
number of successful execution of web service against the
total number of request made. Hence, this unavailability
of the requested web service on the service provider will
eventually lead to an error message received by service
consumer hence acting as the failure.

When the web service has exceeded its response time:
Here, the web service provider is available unlike in the
first scenario but is taking time way too long to respond
to the request made by the service consumer than it was
supposed to. Hence, due to this increase in response time,
it will increase the execution duration of the web
composition and the service consumer will have to wait
for long which is unfavorable.

Response time is the total amount of time it takes to
respond to a request for web service. It is the duration
from the point of time the request has been sent till the
time its response has been received.

Hence, in such cases to reduce the risk of failure the
client's request for that particular web service will be
forwarded to other nearby servers providing similar web
service as per request. This will thus lead to the successful
invocation of web services and is efficient to implement
for the execution of web services. Hence, it increases the
success probability for invocation of web services by
reducing the failure probability.

RESULTS AND DISCUSSION

Our proposed model and algorithm have been tested
on a wide range of the web service request which was
randomly generated. Experiments have been carried out
to examine and compare the solutions which were
obtained after applying the proposed methodology.

The following Table 1 given below states some of the
response status codes based on the request made by the
service consumer to the service provider where 200
represents the successful execution of web service and
others represent a failure.

Table 2 and 3, presents the experimental results for
only one request made for five web services with two
service providers available. It returns the response time
along with the status for each request indicating the
outcome as success or failure. The web service index
identifies the web service, and the server hit name
identifies the service provider to which the request for the
web service has been sent.

Table 2 shows the experimental result before
implementation of fault reduction. Each service here is
sent to a single service provider whereas in Table 3, the
web services have been redirected to another service
provider on the occurrence of a failure.

Table 1: Response status codes and message
Response code Response message
200 OK
400 Bad request
404 Not found
408 Request timeout
429 Too many request
502 Gateway is not good
503 Unavailability of service
04 Timeout of gateway

20

Res. J. Applied Sci., 15 (1): 17-22, 2020

Table 2: Experimental results of web service for one request; before implementing failure reduction
Web service index Status Response time (sec) Outcome Server hit name
WS1 408 2.179 Fail Ser1
WS2 200 0.454 Success Ser1
WS3 404 1.199 Fail Ser1
WS4 403 1.157 Fail Ser1
WS5 200 0.604 Success Ser1

Table 3: After implementing failure reduction
Web service index Status Response time (sec) Outcome Server hit name
WS1 408 1.658 Fail Ser2
WS2 200 0.454 Success Ser1
WS3 200 0.568 Success Ser2
WS4 403 0.166 Fail Ser2
WS5 200 0.889 Success Ser1

Table 4: Experimental results of web services for 100 request; Before implementing failure reduction
Web service index Mean response time (sec) Number of fail outcomes Number of success outcomes Failure probability
WS1 1.456 42 58 0.42
WS2 0.961 24 76 0.24
WS3 0.872 21 79 0.21
WS4 2.256 55 45 0.55
WS5 0.567 19 81 0.19

Table 5: After implementing failure reduction
Web service index Mean response time (sec) Number of fail outcomes Number of success outcomes Failure probability
WS1 1.032 26 74 0.26
WS2 0.211 18 2 0.18
WS3 0.755 15 85 0.15
WS4 2.116 37 53 0.37
WS5 0.232 11 89 0.11

For instance, it can be observed that in Table 3, the
services which had previously failed as shown in Table 2
have now been redirected to server 2. It can also be noted
that the number of web services successfully executing
has increased.

Further, the experiment was extended to a different
number of requests and then their aggregated values for
response time was used to calculate mean response time.
The number of failure and success outcome for all
requests is being noted, and hence the failure probability
for each web service is being calculated.

Table 4 and 5, presents aggregated data for 100
requests for five web services before and after applying
the proposed methodology respectively. It can be
observed that there is an increase in the number of
successful execution of the web service. Hence, there is a
significant reduction in failure probability of web services
by increasing the availability of services in the event of
failure.

Figure 2a, b and 3a, b presents the result of
experiments conducted for 100, 200, 300, 400, 500
requests for five web services. Figure 2a, b compare the
failure probability and Fig. 3a, b compares the response
time before and after applying the proposed methodology.
Hence, it can be clearly observed from the graph that the
failure probability is getting reduced with better response
time. Thus, the web services are being executed
efficiently with optimum execution duration.

Fig. 2(a-b): Failure probability versus number of requests:
a) Before implementing failure reduction and
b) After implementing failure reduction

21

 (a)

(b)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

WS4

WS2

WS3

WS1

WS5

Fa
il

ur
e

pr
ob

ab
il

it
y

WS3

WS1

WS5

WS2

WS4
0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Fa
il

ur
e

pr
ob

ab
il

it
y

100 200 300 400 500

Values

Res. J. Applied Sci., 15 (1): 17-22, 2020

Fig 3(a-b): Response time versus number of requests: a)
Before implementing failure reduction and b)
After implementing failure reduction

CONCLUSION

In this proposed approach, we have conferred an
optimized approach for the composition of web services
by dynamically selecting the web services which allows

specifying constraint on quality prerequisites. We have
investigated the problem of minimizing the risk of failure
of web services by reducing the failure probability as well
as significant improvement in the execution duration of
web services, or the composition is observed.

In future, more exhaustive and extensive research
will be done on other QoS values for efficient execution
of web services. This work can be extended to more
complex web services dealing with sensitive data like in
medical diagnosis, bank transaction, etc.

REFERENCES

01. Zheng, Z. and M.R. Lyu, 2013. Selecting an optimal
fault tolerance strategy for reliable service-oriented
systems with local and global constraints. IEEE.
Trans. Comput., 64: 219-232.

02. Zeng, L.Z., B. Boualem, A.H.H. Ngu, M. Dumas, J.
Kalagnanam and H. Chang, 2004. QoS-aware
middleware for web services composition. IEEE
Trans. Software Eng., 30: 311-327.

03. Aurrecoechea, C., A.T. Campbell and L. Hauw,
1998. A survey of QoS architectures. Multimedia
Syst., 6: 138-151.

04. Nahrstedt, K., D. Xu, D. Wichadakul and B. Li,
2002. QoS-aware middleware for ubiquitous and
heterogeneous environments. IEEE. Commun. Mag.,
39: 140-148.

05. Ardagna, D. and B. Pernici, 2007. Adaptive service
composition in flexible processes. IEEE Trans.
Software Eng., 33: 369-384.

06. Menasce, D.A., 2002. QoS issues in web services.
IEEE Internet Comput., 6: 72-75.

22

(a)

(b)

WS1

WS4 2.5

2.0

1.5

1.0

0.5

0

M
ea

n
re

sp
on

se
 ti

m
e

100 200 300 400 500

Values

WS3

WS5

WS2

WS5

WS2

WS3

WS4

WS1

2.5

2.0

1.5

1.0

0.5

0

M
ea

n
re

sp
on

se
 ti

m
e

