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Abstract: In modern conditions, military robotics remains
one of the priority branches of science and technology.
Similar to the combat arms, modern combat robots are
divided into three groups: ground, flying and floating. The
most complex in design and combat use are ground
robots. According to their functional purpose, ground
military robots are divided into reconnaissance, combat,
engineering and rear. By the degree of automation,
robotic machines can be remotely controlled, autonomous
(operate according to a program installed in the on-board
computer) and also combined. Military robots differ in
size, list of tasks, chassis design, hull configuration. The
most intensive development of ground-based military
robots is being conducted in the USA, Israel, Russia and
some other countries.

INTRODUCTION

In the armies of some foreign states, robotic
complexes of various purposes are already in service now
which are regarded as one of the most important attributes
of the military technology of the future. The high level of
equipping the Armed Forces of these states with robotic
means provides them with the ability to conduct modern
network-centric wars based on the massive application of
robots.

According to the long-term plans of the US
Department of Defense, the development of ground-based
robotic complexes for various purposes whose share
should make at least 30% of the total amount of military
equipment by 2020 will lead to a significant increase in
the combat capabilities of the Armed Forces, while
reducing the number of servicemen and equipment and
will significantly reduce the loss of personnel during the

conduct of hostilities. In Russia, it is planned to combine
several combat and reconnaissance robots into a combat
robotic system. With a view to realizing this project, in
each military district and fleets, special separate mouths
of combat robots and the formation of their control bodies
have been set up.

The creation of armed shock robotic complexes,
united in robotic systems, with their integration with
unmanned vehicles of various purposes, is a new stage in
the development of modern automated high-precision
weapons.

Considering the problems of different robotic
systems, we chose the scheme of the spatial parallel
manipulator used in robotic complexes and also
conducted its analysis of the stress-strain state.

At present, in engineering design calculations, linear
analysis continues to be the most common means of
assessing  their  performance.  The  model  of  a  perfectly 
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elastic body, due to the properties of perfect elasticity,
homogeneity, isotropy, physical and geometric linearity,
introduces considerable simplifications into the
calculation and when solving many important problems it
allows one to obtain a result that quite reliably estimates
the performance of engineering structures. It is often
overlooked that it is at best only the first approximation
which is valid in the nearest neighborhood of the initial
state. However, some of the modern structural materials
do not possess all of the above properties. Therefore, in
order to solve a number of critical problems, it is
necessary to have theories that allow us to adequately
reflect the real properties of the material, even when such
properties differ significantly from those of a perfectly
elastic body. The latter circumstance is determined both
by the nonlinearity of the characteristics of structural
materials and by the change in the metric characteristics
of the structure itself in the process of deformation.
Accounting for these factors is the subject of a nonlinear
analysis.

Essentially necessary to make certain refinements in
the model of an ideally elastic body are first of all
thin-walled spatial engineering constructions. Under
difficult conditions of their loading, high stress levels, the
property of relative stiffness is violated and leads to a
significant complication of the equations of equilibrium
and geometric relationships: they become nonlinear. The
corresponding problem of the theory of elasticity is
usually called a geometrically nonlinear problem. The
desire to apply more thin-walled structural materials with
increased strength as well as the rejection of the relative
rigidity of the body, requires making appropriate changes
both in the content of the model of the perfectly elastic
body itself and in the basic dependencies of the linear
theory of elasticity. Thus, it is precisely thin-walled
structures that constitute the class of problems for which
the development of nonlinear analysis methods, taking
into account the mutual influence of large elastic
displacements and the nonlinearity of structural materials,
is of decisive importance.

The problems of the mechanics of deforming bodies
are inherently nonlinear. There are several main reasons
for the appearance of nonlinear terms in the main
dependencies of the theory of elasticity:

C Taking into account the geometric nonlinearity, when
the displacement of the structure causes significant
changes in its geometry, so that the equilibrium
equations are compiled for the deformed state

C Nonlinearity, determined by the nonlinearity of the
connection between deformations and stresses, i.e.
physical nonlinearity of materials

C The nonlinearity of the mechanical characteristics of
the interaction of structural elements, i.e., structural
nonlinearity

C Combinations of different categories of nonlinearity

Geometrically nonlinear problems arise in the study
of the stress-strain state (VAT) of bodies that do not have
the property of relative rigidity. In this case, in deriving
the dependencies between deformations and
displacements, one can not neglect the rotation angles of
the elements in calculating their length and linear
deformations in the expressions for the rotation angles. In
the general case, the geometric and structural
nonlinearities are simultaneous in nature. However, they
can often be considered separately, independent from
each other, since in the applied region seldom
single-valued nonlinear effects appear simultaneously.

The results of the calculation within the framework of
the linear theory are not always sufficiently accurate
which can adversely affect the reliability of the
constructive system or its economy. Therefore, in such
cases, in order to make real conclusions about the VAT of
constructive systems under static and dynamic influences,
it is necessary to use a nonlinear theory that can also serve
to assess the justification of the application and the
accuracy that the linear theory gives. The main directions
of the development of nonlinear analysis are currently
developing in two directions improving the computational
models of complex systems in order to ensure the
accuracy and adequacy of nonlinear analysis and the
development of effective and cost-effective analysis
algorithms which makes it possible to conduct it at an
acceptable cost and time.

The modern theory of analysis of continuum
mechanics and engineering design on the basis of the
finite element method (MCE) has been developed to such
an extent that it can be effectively applied to solve very
complex nonlinear problems. It is based on the developed
theory of continuum mechanics, worked out methods of
discretization of structures, effective numerical methods
for the formation and solution of large systems of
nonlinear equations and rapidly developing computer
technology. However, the complexity of nonlinear
analysis, based on multi-step or iterative algorithms, is
incommensurably higher than the laboriousness of linear
analysis which puts forward increased demands on
memory resources and computer speed[1-5].

Analysis of nonlinear systems is conceived as a
continuous process of modeling. Therefore, it is very
important that each element of the design model either be
in conditions similar to the conditions of the original
system, or every inaccuracy in the simulation leads to
unpredictable accumulation of errors. Further, having
overcome the difficulties of mathematical formulation of
the nonlinear model, the researcher faces a whole series
of questions, the answers to which are difficult to obtain.
Among them is the choice of the decision algorithm, since
the approved linear analysis apparatus can no longer be
used; lack of firm confidence that the solution is unique;
difficulty  or  inability  to  verify  the  results by a physical 
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experiment; existence of only a few rules of control,
giving confidence in the correctness of the solution.
Since, all solutions of non-linear analysis are built on the
basis of certain incremental theories, we must accept the
inevitable error of each step and the accumulation of error
in the calculation process. Therefore, it is often necessary
to use some heuristic techniques to develop a strategy for
solving and developing specific procedures that save the
computer’s memory and reduce the amount of computing
work[6].

The modern achievements of nonlinear analysis are
based on the accumulated experience of rational modeling
of complex structures. The concept of modeling, based on
the closeness of the real construction and the
computational model, is the factor that gives the
researcher confidence in the result. Although a rigorous
mathematical formulation of the existence and
convergence of solutions is rarely possible, a physical and
numerical experiment that largely replenishes this gap
comes to the rescue. When calculating complex
structures, an important element of the analysis is the
comparison of results obtained using different models,
methods and algorithms. It is the complexity of the
analysis that becomes the determining factor that gives
confidence in the reliability of the result obtained. The
most complicated problems of the mechanics of a
deformable solid are nonlinear dynamic problems. In
them, it is necessary to take into account the variability of
the parameters of VAT over time. There is no need to
convince in complexity of the joint account of nonlinear
and dynamic effects. In addition, for a number of
problems, mathematical theories have not yet been
constructed which could more or less accurately describe
the experimentally determined features of nonlinear
non-stationary deformation of materials.

Naturally, in the vast majority of cases, only
numerical methods are applicable to the solution of
nonlinear dynamical problems: for example, the FEM, the
most important advantage of which is the existence of
stable methods of numerical integration of systems of
differential equations of motion, describing the motion of
mechanisms and composed taking into account the
elasticity of the links[7, 8].

Based on the number of works published in recent
years and the number of researchers who have devoted
themselves to the study of problems, it can be concluded
that the scope of the FEM in nonlinear analysis is one of
the most relevant research areas in continuum mechanics.
Methods  for  solving  nonlinear  problems  or,
respectively, nonlinear FEM equations can be divided into
three main groups: incremental, iterative and mixed
(incremental-iterative). Within each, special methods or
methods have been developed that are adapted to
nonlinear problems.

However, along with this, further work is being done
in this area, especially because common programs are not 

Fig. 1: Mechanism of Poselje-Lipkin

equally good for all non-linear problems. According to the
developed algorithm, a package of applied programs was
compiled, and the dynamic VAT of the Posel’e-Lipkin
plane mechanism was calculated and analyzed (Fig. 1).

This mechanism with light parts and operating at high
speeds, serves to build a straight path with the help of
point P. It consists of 7 links made of steel rods of round
cross section with a diameter of 0.006 m and a post. The
links are connected in 6 rotational kinematic pairs. The
points A, C and P must always lie on the straight line
passing through point A. The condition AC•AP = const is
always satisfied. When AD = CD, the point C must move
along the arc of the circle and the point P-exactly along
the straight line but in connection with the account of the
elasticity of the links these conditions are not satisfied[9-11].
The  mechanism  has  the  following  geometric
dimensions:

2 6 3 7 4 5l l l l 0.3048 m, l l 0.215 m     

The mechanism consists of eight links, counting the
rack, with ten rotational kinematic pairs. In Fig. 1, the
links of the mechanism are indicated by the numbers 1-7
and the post is accepted as the zero link. It is assumed that
the mechanism has one degree of freedom, and the law of
motion of the leading link 1 is described by Eq. 2:

(2)1 sin 750t 

Where:
φ1 = The crank angle relative to the inertial reference

frame XY
t = The time

Known kinematics of the mechanism, obtained by the
method of generalized coordinates by Masanov, etc. The
dynamics of this mechanism, the elastic elements of
which are made of isotropic material was studied linearly
by Masanov. The order of the System of Linear Algebraic
Equations (SLAE). The number of iterations over time 67
and by nonlinearity.

The calculation program was tested to solve a similar
problem for small displacements. When only the forces of 
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Fig. 2: The Poselje-Lipkin mechanism for finite element
simulation

inertia act when all links are considered elastic, due to the
elasticity of the links, the dimensionless deviation of the
node 6, with the angle of rotation of the leading link φ1 =
sinΩ according to the developed algorithm is shown in
Fig. 2. Here Ω = 7.50 t. Test problem, according to the
developed algorithm.

The material is boron aluminum[12]. Elastic and
geometric parameters of the mechanism, consisting of
anisotropic links:

(3)

5 5 3
1 2 1

3 3
2 3 1

3
2

Е 2·10 МПа,Е 0.9·10 МПа; G 80·10 МПа,

G 40·10 МПа;G 63·10 Мпа; 0.25,

0.13;  2640 кг/м ;d 0.006 м

  

   

    

Where:
E1, E2 = The elastic modules
G1, G2, G3 = The elastic modules
v1, v2 = Poisson’s coefficients
ρ = The density
d = The diameter of the links

Table 1 shows a comparison of elastic displacements
and in Table 2 longitudinal and shear forces, normal
stresses obtained from linear and nonlinear calculations
from the action of inertia forces in the isotropic links of
the Poselje-Lipkin mechanism[13]. As can be seen in Table
1, the values of displacements in elements 2 and 3,
obtained with nonlinear calculation, exceed by 20-25%,
the values of displacements obtained with linear
calculation. In the remaining elements which are not
shown in the table, the movements increase by 14-18%.
And internal forces and stresses with allowance for
geometric nonlinearity, decrease by 21-23% in elements
1 and 2, in other elements by 15%. Taking into account
the anisotropy, when φ = 0, ψ = 0 leads to an increase in
displacements by 50%[14].

Figure 3-5 show graphs of maximum longitudinal
and transverse displacements, longitudinal and transverse
forces, normal and tangential stresses from the  combined 
action  of  inertia  forces  and  external load F = sinωt, in
the isotropic links of the Poselje-Lipkin mechanism.

Fig. 3: Elastic movements of the V node 6

Figure 6-8 show graphs of the maximum longitudinal
and transverse displacements, longitudinal and transverse
forces, normal and tangential stresses from the action of
the external load F = e-αtsinωt, in the isotropic links of
the Poselje-Lipkin mechanism. The external force is
applied at node 6. The values   obtained for linear and
nonlinear calculations are compared. Moves also increase,
and internal forces and stresses decrease. Large
longitudinal displacements occur in elements 3 and 7,
large lateral displacements of 2 and 3. The most loaded
element  is  1  and  5,  the  least  6.  Taking  an isotropy
when φ = 0, ψ = 0 leads to an increase in movement by
50%[15].

Calculation of the dynamics of elastic RPM (Fig. 9)
is carried out by computer simulation. To describe the
finite element model (CEM) of the PPM, we divide it into
rectilinear two-node rod elements connected at nodes
through kinematic pairs. For APM, consisting mainly of
individual rod links such a dismemberment is natural. The
MRP nodes are numbered in the GCS which serves to
identify them in the list of nodes. Elements have their
numbers-initial and final, with the help of which their
identification is made in turn.

When finite-element dynamic modeling of the PPM,
we divide into 9 straight-line two-node rod elements with
9 nodes.

In the APM, the leading links are 1, 3, 5. The lengths
of  the  links  assume  the  following  values:  l1  =  l3 =
l5   =  1.3  m,  l2  =  l4  =  l6  =  l1  m,  l7  =  l8  =  l9 =
1.5l1/cos30° m.

The inertial coordinate system XYZ is rigidly
connected  to  a  fixed  base,  the  origin  of  which  is  at
node 1. To describe the VAT of elastic PPMs in the
second chapter, matrix equations of closure of the MRP
contours are compiled and an algorithm and a program for
analyzing displacements are developed. The manipulator
kinematics was investigated by the Denavite-Hartenberg
matrix method with six parameters[16]. The coordinates X,
Y, Z of the nodes of the design model of the planning
model are defined in the Global Coordinate System
(GCS).
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Table 1:Maximum longitudinal, transverse and angular displacements in the cross sections of elements over time, from the action of inertia forces
in the isotropic links of the mechanism

Longitudinal movements Transversal movements Angular movements
uξ10G4 (m) in the final vξ10G4 (m) in the 8th φξ10G4 (m) in the final
section 3rd element section 2nd element section 2nd element
----------------------------------------- ----------------------------------------- ------------------------------------------

Δt Linear Non-linear Linear Non-linear Linear Non-linear
1 2 3 4 5 6 7
2 0 0 0 0 0 0
3 -0.86 -1.03 0.13 0.16 -4.57 -5.48
4 2.22 2.67 0.84 1.00 -20.83 -24.99
5 14.08 16.90 2.46 2.95 -46.47 -55.76
6 32.65 39.18 4.71 5.65 -73.07 -87.68
7 52.83 63.39 7.23 8.68 -94.90 -113.89
8 68.52 82.22 9.87 11.85 -108.38 -130.06
9 74.23 89.07 12.54 15.05 -109.25 -131.11
10 66.65 79.98 14.39 17.27 -96.69 -116.03
11 48.37 58.04 14.12 16.94 -76.74 -92.09
12 28.71 34.45 11.62 13.95 -55.75 -66.90
13 14.72 17.66 8.20 9.84 -35.27 -42.33
14 7.40 8.88 5.14 6.17 -15.16 -18.19
15 4.48 5.37 2.79 3.34 4.31 5.17
16 2.46 2.96 0.78 0.93 23.59 28.31
17 -1.30 -1.55 -1.12 -1.35 43.82 52.59
18 -7.54 -9.04 -2.67 -3.20 62.84 75.41
19 -14.99 -17.99 -3.53 -4.24 71.82 86.18
20 -19.08 -22.89 -3.45 -4.14 62.98 75.57
21 -14.86 -17.83 -2.27 -2.72 38.09 45.71
22 -1.52 -1.82 -0.23 -0.27 5.29 6.35
23 17.77 21.32 2.29 2.75 -27.31 -32.77
24 37.57 45.09 4.94 5.93 -54.75 -65.70
25 52.31 62.77 7.65 9.18 -73.36 -88.03
26 57.45 68.94 10.28 12.34 -78.26 -93.91
27 50.94 61.13 11.96 14.35 -68.62 -82.34
28 36.01 43.21 11.54 13.85 -50.83 -61.00
29 20.85 25.02 9.15 10.98 -31.45 -37.73
30 10.51 12.61 6.09 7.30 -12.53 -15.04
31 5.37 6.44 3.40 4.08 5.43 6.51
32 3.03 3.64 1.21 1.45 22.13 26.56
33 0.08 0.10 -0.87 -1.05 38.58 46.30
34 -5.72 -6.86 -2.89 -3.46 56.44 67.72
35 -14.45 -17.34 -4.35 -5.22 73.22 87.86
36 -23.43 -28.12 -4.91 -5.89 79.27 95.13
37 -27.02 -32.43 -4.43 -5.32 67.23 80.67
38 -21.03 -25.24 -2.92 -3.51 40.09 48.10
39 -6.06 -7.28 -0.68 -0.82 6.46 7.75
40 13.82 16.58 1.91 2.29 -26.09 -31.30
41 33.00 39.60 4.56 5.48 -53.17 -63.80
42 46.34 55.61 7.26 8.71 -70.72 -84.86
43 50.01 60.01 9.77 11.73 -73.62 -88.34
44 42.87 51.44 11.12 13.35 -62.11 -74.53
45 29.15 34.98 10.33 12.40 -43.47 -52.17
46 16.32 19.59 7.83 9.39 -23.85 -28.61
47 8.10 9.72 4.92 5.90 -5.04 -6.05
48 4.23 5.07 2.43 2.92 12.30 14.76
49 1.98 2.37 0.29 0.35 28.13 33.76
50 -1.95 -2.34 -1.87 -2.25 43.97 52.77
51 -9.28 -11.13 -3.87 -4.65 61.55 73.86
52 -19.38 -23.25 -5.15 -6.18 76.98 92.38
53 -28.36 -34.03 -5.42 -6.51 79.75 95.70
54 -30.24 -36.29 -4.63 -5.55 64.12 76.94
55 -22.01 -26.42 -2.87 -3.45 34.90 41.89
56 -5.44 -6.52 -0.50 -0.60 1.00 1.19
57 14.79 17.75 2.12 2.55 -30.80 -36.96
58 33.05 39.66 4.78 5.73 -56.53 -67.83
59 44.64 53.57 7.45 8.95 -71.59 -85.91
60 46.28 55.53 9.81 11.77 -71.19 -85.42
61 37.80 45.36 10.74 12.89 -57.30 -68.76
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Table 1: Continue
Longitudinal movements Transversal movements Angular movements
uξ10G4 (m) in the final vξ10G4 (m) in the 8th φξ10G4 (m) in the final
section 3rd element section 2nd element section 2nd element
----------------------------------------- ---------------------------------------- ------------------------------------------

Δt Linear Non-linear Linear Non-linear Linear Non-linear
62 24.55 29.46 9.52 11.42 -37.87 -45.45
63 13.26 15.91 6.86 8.23 -18.19 -21.83
64 6.53 7.84 4.07 4.88 0.36 0.43
65 3.46 4.15 1.72 2.06 17.16 20.59
66 1.01 1.21 -0.42 -0.51 32.50 39.00
67 -3.91 -4.70 -2.63 -3.16 48.36 58.03

Table 2: Maximum longitudinal, transverse forces and normal stresses in sections of elements, with the passage of time from the action of inertia forces
in the mechanism of Poselje-Lipkin

N·10G2 H in the 45th Q.10G2 H in the 18th σ.10G2Πa in the 45th section
section 1st element section 2nd element 1st element
------------------------------------------ --------------------------------------- ---------------------------------------

Δt Linear Non-linear Linear Non-linear Linear Non-linear
1 2 3 4 5 6 7
2 0 0 0 0 0 0
3 3.82 3.18 2.04 1.70 1.70 1.42
4 6.81 5.68 8.41 7.01 6.80 5.66
5 4.89 4.08 17.50 14.58 18.06 15.05
6 -2.17 -1.81 25.98 21.65 33.98 28.32
7 -17.08 -14.23 31.83 26.53 50.32 41.93
8 -39.08 -32.56 34.14 28.45 65.39 54.49
9 -64.17 -53.47 32.20 26.83 79.90 66.58
10 -86.78 -72.32 27.11 22.59 90.58 75.49
11 -94.61 -78.84 21.17 17.64 95.03 79.19
12 -79.64 -66.37 15.12 12.60 94.31 78.59
13 -46.78 -38.98 8.65 7.21 88.36 73.63
14 -11.03 -9.19 1.86 1.55 74.57 62.14
15 12.84 10.70 -4.84 -4.03 51.94 43.29
16 18.55 15.46 -11.54 -9.62 24.16 20.13
17 10.85 9.04 -18.65 -15.54 -1.40 -1.17
18 1.59 1.33 -25.20 -21.00 -18.32 -15.27
19 -2.75 -2.29 -27.67 -23.06 -26.51 -22.09
20 -4.37 -3.64 -23.54 -19.62 -26.96 -22.46
21 -2.91 -2.42 -13.95 -11.63 -18.03 -15.02
22 -0.69 -0.57 -2.17 -1.81 -1.50 -1.25
23 -3.27 -2.73 8.68 7.23 18.01 15.01
24 -14.19 -11.82 16.95 14.13 36.29 30.24
25 -32.03 -26.69 21.67 18.06 52.66 43.88
26 -52.97 -44.14 21.80 18.17 68.06 56.71
27 -71.84 -59.87 18.00 15.00 79.49 66.24
28 -77.35 -64.46 12.45 10.38 84.34 70.29
29 -62.21 -51.84 6.40 5.33 82.90 69.08
30 -32.31 -26.93 0.19 0.16 74.53 62.11
31 -3.07 -2.55 -5.83 -4.86 57.15 47.63
32 12.17 10.14 -11.35 -9.46 31.08 25.90
33 9.85 8.21 -16.71 -13.93 1.26 1.05
34 -2.59 -2.16 -22.52 -18.77 -24.17 -20.14
35 -12.59 -10.49 -27.79 -23.16 -38.86 -32.39
36 -15.05 -12.54 -29.05 -24.21 -43.08 -35.90
37 -12.69 -10.57 -23.92 -19.93 -38.39 -31.99
38 -6.98 -5.81 -13.77 -11.48 -24.96 -20.80
39 -2.12 -1.77 -1.92 -1.60 -5.68 -4.74
40 -3.68 -3.07 8.77 7.31 14.85 12.37
41 -13.94 -11.61 16.92 14.10 33.24 27.70
42 -30.57 -25.47 21.39 17.83 49.81 41.51
43 -50.00 -41.67 21.03 17.53 65.19 54.33
44 -66.56 -55.47 16.65 13.88 76.06 63.38
45 -68.96 -57.46 10.56 8.80 79.90 66.58
46 -51.49 -42.91 4.11 3.43 76.87 64.05
47 -22.52 -18.76 -2.23 -1.86 65.97 54.98
48 2.10 1.75 -8.03 -6.69 45.55 37.96
49 10.94 9.12 -13.15 -10.96 17.12 14.27
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Table 2: Continue
N·10G2 H in the 45th Q.10G2 H in the 18th σ.10G2Πa in the 45th section
section 1st element section 2nd element 1st element
------------------------------------------ --------------------------------------- ---------------------------------------

Δt Linear Non-linear Linear Non-linear Linear Non-linear
50 3.35 2.80 -18.15 -15.13 -13.27 -11.05
51 -10.94 -9.11 -23.66 -19.72 -37.00 -30.83
52 -19.58 -16.32 -28.28 -23.57 -48.68 -40.57
53 -19.84 -16.53 -28.38 -23.65 -49.52 -41.27
54 -14.86 -12.39 -22.13 -18.44 -41.27 -34.39
55 -7.22 -6.01 -11.42 -9.52 -25.07 -20.89
56 -2.04 -1.70 0.32 0.27 -4.42 -3.68
57 -4.45 -3.71 10.60 8.83 16.20 13.50
58 -15.47 -12.89 18.21 15.18 34.24 28.54
59 -32.09 -26.74 21.86 18.22 50.82 42.35
60 -50.99 -42.49 20.51 17.09 65.75 54.80
61 -65.25 -54.38 15.42 12.85 75.40 62.83
62 -63.67 -53.06 8.94 7.45 77.72 64.76
63 -43.15 -35.96 2.32 1.93 72.82 60.68
64 -14.79 -12.33 -3.98 -3.32 59.41 49.50
65 5.67 4.72 -9.55 -7.96 36.33 30.28
66 9.17 7.64 -14.43 -12.03 6.33 5.28
67 -2.03 -1.69 -19.33 -16.11 -23.59 -19.66

Fig. 4(a-c): Maximum longitudinal displacements, (a) Longitudinal forces, (b) Normal stresses and (c) The elements of
the Poselje-Lipkin mechanism with the joint action of inertia forces and concentrated force: linear isotropic;
nonlinear isotropic; linear anisotropic case

The PPM links are made of steel rods of round
cross-section with a diameter of 0.006 m. The shape and
dimensions of the cross section, the elastic properties of
the materials are constant. The dimensions and design of
the nodes are neglected.

The manipulator is under the action of the node
forces of inertia of the FE, additional forces, nodal
external forces, whose magnitude is 10 N and applied at
the nodes 3, 4, 7. The order of SLAU: 54. Iteration over
time: 807. Iteration over nonlinearity: 94.
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Fig. 5(a-c): Maximum lateral movements, (a) Transverse forces, (b) Tangential stresses and (c) The elements of the
Poselje-Lipkin mechanism with the joint action of inertia forces and concentrated force: linear isotropic;
nonlinear isotropic; linear anisotropic case

Fig. 6: Maximum longitudinal and transverse displacements in the elements of the mechanism under the action of only
a concentrated force F = e-αtsinωt: linear isotropic; nonlinear isotropic; linear anisotropic case

The Newmark method is used to solve the dynamics
equations.  The  integration  step  with  respect  to  the
time Δt is chosen based on the angular velocity of the

leading links and on the parameters that determine the
required accuracy of the reproduced processes and the
stability of the integration method. Within each step, the 
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Fig. 7: Maximum longitudinal and transverse forces in the elements of the mechanism under the action of only a
concentrated force F = e-αtsinαt: linear isotropic; nonlinear isotropic; linear anisotropic case

time taken into account is the change in both kinematic
and   elastic   displacements,   velocities   and 
accelerations.

In the study of the dynamics of the RPM, elastic
damping in the materials of the links is taken into account.
The transformation of nodal displacements and elastic
reactions of an element from the general coordinate
system to local ones is carried out according to the
developed algorithm, and internal stresses are located.

Figures 10-13 show the changes in longitudinal and
transverse displacements, longitudinal forces from the
joint action of inertia forces and concentrated force, in the
links of the APM during the four turn of the leading link.
The values   obtained for linear and nonlinear calculations
are compared.

In the APM, the largest longitudinal movements are
observed in the elements 4 and 7, transverse
displacements in the elements 4 and 6. Nonlinear
movements in the elements 2, 4 and 6 exceed linear by

30% and in the remaining elements by 15%. The most
loaded in the longitudinal direction are the nodal cross
sections of the elements 1-6.

As a result of the study of the dynamic stress-strain
state of elastic flat and spatial mechanisms with
geometrically nonlinear anisotropic links.

First discrete finite element calculation dynamic
model of elastic deformation of plane and spatial
mechanisms with geometrically nonlinear anisotropic and
isotropic links was proposed.

A finite-computational scheme for solving the basic
system of non-linear equations of motion with variable
linear and non-linear stiffness matrices as well as a mass
matrix and elastic damping of the system with a
representation of the coefficients of the latter through
lower vibration frequencies of mechanisms with a choice
for each mechanism of the time step, ensuring the stability
of the calculation. A unified program complex, designed
as a standard program, is compiled for the calculation of 
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Fig. 8: Maximum normal stresses, tangential stresses in the elements of the mechanism under the action of only a
concentrated force F = e-αtsinωt: linear isotropic; nonlinear isotropic; linear anisotropic case

Fig. 9: Finite element planning model

dynamic and kinematic parameters, internal forces and
stresses in the elements of plane and spatial mechanisms
from the action of external variable forces and inertia
forces. A standard program can be used to calculate the
dynamic elastic state of plane and spatial mechanisms
with known kinematic analysis.

Multivariate calculations of the values   of dynamic
displacements and internal forces in the elements of
mechanisms with different initial parameters and speeds
of the leading link; the results of calculations are analyzed
and presented in the form of graphs and diagrams.

The basic FEM relations for planar and spatial
mechanisms with rod elements for large displacements are
obtained and nonlinear stiffness matrices of the first and
second order CE with the use of the Lagrange equation
are calculated. Algorithms have been developed and a
package of applied programs has been compiled in a
high-level language for calculating, analyzing and
estimating   the   dynamic   VAT   of   mechanisms   with 
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Fig. 10: Change in longitudinal and transverse displacements in the links of the RPM with the joint action of inertia
forces and the concentrated force F = e-αtsinωt: linear isotropic; nonlinear isotropic; linear

Fig. 11: Continue
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Fig. 11: Change of angular displacements in the links of the RPM with the joint action of inertia forces and the
concentrated force F = e-αtsinωt: linear isotropic; nonlinear isotropic; linear anisotropic case

Fig. 12: Change in longitudinal and transverse forces in time in the links of the RPM with the joint action of inertia
forces and the concentrated force F = e-αtsinωt: linear isotropic; nonlinear isotropic; linear anisotropic case

anisotropic and isotropic elastic links for geometric
nonlinearity depending on arbitrary external variable
forces and initial physical and geometric characteristics.
The obtained results fully correspond to the tasks and

completely cover their solutions. The results and
conclusions of studies of the dynamic VAT of nonlinearly
elastic plane and spatial mechanisms with rectilinear
anisotropic  links,  make  it  possible  to  select  the  most 
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Fig. 13: Change of bending moments in time in the links of the RPM with the joint action of inertia forces and the
concentrated force F = e-αtsinωt: linear isotropic; nonlinear isotropic; linear anisotropic case

optimal parameters of the mechanisms, establish
maximum stresses, forces, elastic displacements,
velocities and accelerations at any points of the
computational elements of mechanisms under various
loading conditions. Part of the results of scientific
research and developed standard programs is used in our
research institute.

The proposed mechanical-mathematical discrete
design model for the dynamics of nonlinear elastic spatial
mechanisms with different kinematic pairs and a single
program complex for calculating dynamic VAT compiled
on its basis for large elastic displacements of the links of
mechanisms, in contrast to modern achievements, allows
to take into account the elastic anisotropic properties of
each link, the influence of static and various dynamic
forces.

CONCLUSION

Thus, the created mechanical-mathematical discrete
design model can be used to develop and evaluate the
efficiency of manipulators of various robotic systems in
the interests of the Armed Forces of the Republic of
Kazakhstan as combat, engineering and rear robots.
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