

OPEN ACCESS

Key Words

Clinical outcome, critical care, hypermagnesemia, ICU, dyselectrolytemia, electrolytes

Corresponding Author

S. Ramachandradurai,
Department of Emergency Medicine
Sree Mookambika Institute of
Medical Sciences College
Kanyakumari, Tamil Nadu, India

Author Designation

¹Associate Professor ²Junior Resident

Received: 15th March 2025 Accepted: 08th April 2025 Published: 19th May 2025

Citation: V. Ravi Shankar and S. Ramachandradurai, 2025. A Study on Serum Magnesium Levels in Critically ILL Patients in a Stertiary Care Hospital. Res. J. Med. Sci., 20: 164-170, doi: 10.36478/makrjms. 2025.3.164.170

Copy Right: © 2025. V. Ravi Shankar and S. Ramachandradurai. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

A Study on Serum Magnesium Levels in Critically ILL Patients in a Stertiary Care Hospital

¹V. Ravi Shankar and ²S. Ramachandradurai

¹Department of Emergency Medicine, Sree Mookambika Institute of Medical Sciences Kanyakumari, Tamil Nadu, India
²Department of Emergency Medicine Sree Mookambika Institute of

²Department of Emergency Medicine Sree Mookambika Institute of Medical Sciences College Kanyakumari, Tamil Nadu, India

Abstract

Hypomagnesemia can potentially cause fatal complications including ventricular arrhythmia, coronary artery spasm and sudden death. It also associates with increased mortality and prolonged hospitalization. The present study aimed to assess the incidence of magnesium (Mg) disturbances in patients admitted to a multidisciplinary intensive care unit (ICU) and correlated serum magnesium levels with clinical outcomes. The study was conducted on 100 critically ill patients aged above 18 years and admitted in sree mookambika institute of medical sciences at emergency medicine department. Serum magnesium levels at admission were correlated with mortality, need for and duration of mechanical ventilation, duration of ICU stay, presence of comorbid conditions and electrolyte disturbances. There was a high incidence of Mg disturbances [hypomagnesemia (41%) and hypermagnesemia (14%)] at admission among patients admitted to the ICU with mean Mg level among patients who expired was 1.55±0.68 mg/dL and the association with outcome was found to be statistically significant (p=0.001). Hypomagnesemia (HypoMg) was significantly associated with higher mortality (51%) and need for mechanical ventilation (P<0.05) The association of baseline APACHE II and SOFA scores with serum Mg levels was statistically significant (p=0.001 and 0.002 respectively). The incidence of gastrointestinal disorders was significantly higher among hypomagnesemia patients while chronic kidney disease was significantly higher in hypermagnesemic patients (P<0.05) On comparing the incidence of electrolyte disorders between HypoMg, NormoMg and HyperMg groups, it was found that hypokalemia and hypocalcemia (p=0.0003 and 0.039 respectively) were associated with hypomagnesemia and hyperkalemia and hypercalcemia (p=0.001 and 0.005 respectively) were associated with hypermagnesemia. Our study highlights the role of Mg monitoring in critically ill patients admitted to the ICU and its value for a favorable outcome. We found that hypomagnesemia was significantly associated with adverse outcomes and higher mortality in critically ill patients. Intensivists should maintain a high index of suspicion for Mg disturbances and evaluate patients appropriately.

INTRODUCTION

Electrolyte disturbances are extremely prevalent amongst patients who are critically ill and admitted to intensive care units (ICU) and are correlated with more mortality and morbidity^[1]. Magnesium (Mg) has the second highest intracellular cation concentration after potassium and has an important role in various physiological and biochemical processes. It acts as a co-factor for enzyme and transport systems (for ions like potassium and calcium), regulation of cardiac and smooth muscle tone and modulation of immune function^[2-5]. It is neither exchanged across cell membranes nor is it under hormonal regulation, therefore, the main determinant of magnesium balance is serum magnesium itself^[6]. Magnesium is often known as the "forgotten electrolyte". This is because, even though alterations in level are common, the diagnosis, clinical implications and treatment are often overlooked^[2]. The incidence of abnormalities of Magnesium occurring in critically ill patients in ICU is 65%^[7]. Hypomagnesemia is caused by conditions like inadequate dietary magnesium intake gastrointestinal and renal disorders [8] and correlates with increased morbidity and mortality in hospitalized patients and correlates with prolonged duration of ICU stay, increased need and time of requirement of mechanical ventilation (MV), increased incidence of electrolyte sepsis and other disturbances (hypocalcemia and hypokalemia)^[7]. On the other hand, hypermagnesemia occurs less frequently and is seen in 5% of hospitalized patients^[7]. It occurs as a result of impaired renal magnesium excretion, iatrogenic administration of magnesium in antacids, enemas, or parenteral nutrition, diabetic ketoacidosis etc and may have serious implications^[6]. The primary objective of the present study was to estimate the incidence of hypomagnesemia and hypermagnesemia in critically ill patients admitted to a multidisciplinary ICU and to correlate serum magnesium levels at admission with mortality. The secondary objective was to correlate serum magnesium levels with the length of ICU stay, need for and duration of mechanical ventilation, other electrolyte abnormalities and comorbid conditions in critically ill patients.

MATERIALS AND METHODS

After approval from the institutional ethical clearance (IEC), this prospective single center observational study was conducted on 100 patients of age 18 years or above admitted to the emergency medicine department at sree mookambika college of medical sciences. An informed written consent was taken from the patients or guardian after explaining the study protocol. Inclusion criteriua are Patients with age >18 years diagnosed with any medical illness and admitted in Intensive Medical Care unit of Index Medical College Hospital and Research centre, Indore and patients

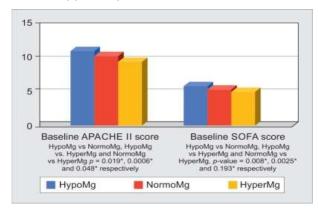
consenting for the study were included. Exclusion **Patients** with documented criteria hypomagnesemia/hypermagnesemia before admission, previous magnesium supplementation, mortality within 24 hours of admission to ICU and those in whom serum magnesium testing was missed on day one, were excluded from the study. Detailed history and clinical examination were performed and records were checked to confirm the presence of comorbidities such as Diabetes, Hypertension, Coronary Artery disease and other illnesses. Complete hemogram, Serum creatinine, serum electrolytes, liver function tests were done. During the hospital stay, patients were followed up with daily clinical examinations. Patients were treated as per ICU protocol and on day 1 of admission, serum magnesium levelin patients admitted to critical care unit was estimated and correlated with patient outcome regarding length of stay in the critical care unit, need for ventilatory support, duration of ventilatory support and mortality. Acute physiology and chronic health evaluation score II (APACHE II) and sequential organ failure assessment (SOFA) scores were calculated with the collected values of physiological and biochemical data^[9,10]. Correlation of serum magnesium levels with mortality need for and duration of MV, duration of ICU stay, APACHE II and SOFA score, comorbidities and other electrolyte abnormalities (serum phosphate, calcium, potassium and sodium) was done. Usage of magnesium-lowering drugs (amino glycosides, mannitol, diuretics), sepsis and biochemical parameters (creatinine and albumin) were noted. The data was recorded on a Microsoft Excel spreadsheet and analyzed using SPSS version 22.0 version. The mean and standard deviation were used to compare continuous parametric data while meaning and interquartile range was used for continuous non-parametric data and percentages for categorical data. The comparison of categorical data was conducted using Chi-square test, while that of continuous data was done using an independent t-test. One-way ANOVA was used to compare data between the groups. Pearson correlation coefficient was applied to evaluate correlation between two continuous variables and Spearman rank the correlation was used to analyze the correlation between categorical variables. A p<0.05 was considered statistically significant.

RESULTS AND DISCUSSIONS

Out of the 100 patients analyzed, majority (59%) were aged 50 years or older and the mean age was 51.05 years (±16.29). A higher preponderance of males was observed as compared to females i.e., 60% vs 40% respectively with a M:F ratio of 1.5:1. 41% (41/100) of patients were hypomagnesemia, 14% (14/100) were hypermagnesemia and 45% (45/100) were

normomagnesemia. A statistically insignificant correlation was observed between age and gender with serum magnesium levels (p=0.899 and 0.750 respectively) (Table 1).

Correlation of Comorbidities with Serum Magnesium Levels: Our study population included patients with various co-morbidities as shown in (Table 2). On correlating serum magnesium levels with various comorbidities, we found a significantly higher incidence of gastrointestinal disorders in the hypomagnesemia group (HypoMg vs NormoMg, HypoMg vs HyperMg, and NormoMg vs HyperMg p-value=0.022*, 0.061 and 0.889). The incidence of alcoholism was higher with statistical significance amongst patients with hypomagnesemia and normomagnesemia. (HypoMg vs NormoMg, HypoMg vs HyperMg and NormoMg vs HyperMg p-value=0.723, 0.003* and 0.006*). The hypermagnesemic group was associated with a higher incidence of chronic kidney disease (CKD). (HypoMg vs NormoMg, HypoMg vs HyperMg and NormoMg vs HyperMg p-value=0.948, 0.0009* and 0.0004* respectively). A statistically insignificant correlation (P>0.05) of serum magnesium with diabetes, hypertension, coronary artery disease and hypothyroidism was observed. (Table 2).


Table 1: Correlation of Age and Gender with Serum Magnesium Levels Total no. of HvpoMg NormoMg HyperMg

patients (N=100)	(N=41)	(N=45)	(N=14)	p-value
Age (years)	51.03+16.01	51.04+16.50	51.15+15.52	0.899
Gender				
Male	24 (40%)	28 (46.67%)	8 (13.33%)	0.750
Female	17 (42.5%)	18 (45%)	5 (12.5%)	

Table 2: Correlation of Co-Morbidities with Serum Magnesium Levels							
Total no. of	НуроМд	NormoMg	HyperMg				
patients (N=100)	(N=41)	(N=45)	(N=14)	p-value			
Comorbidities							
Diabetes							
mellitus (n=41)	18 (43.9%)	17 (41.5%)	6 (14.6%)	0.241			
Gastrointestinal							
disorders (n=34)	15 (44.11%)	36 (28.5%)	10 (25.6%)	0.036*			
Alcoholism (n=30)	10 (33.3%)	9 (30%)	11 (36.7%)	0.012*			
Hypertension (n=16)	2 (12.5%)	10 (62.5%)	4 (25%)	0.423			
Coronary heart							
disease (n=12)	2 (16.7%)	6 (50%)	4 (30%)	0.932			
Chronic kidney							
disease (n=3)	1 (33.3%)	1 (33.3%)	1 (33.4%)	0.001*			
Hypothyroidism (n=7)	2 (28.5%)	3 (42.8%)	2 (28.7%)	0.572			

Table 3: Correlation of Serum Magnesium Levels with Mortality **Expired patients** Patients transferred to Ward (62%) p-value (38%)Mean Magnesium levels (mg/dL) 1.55+0.68 1.90+0.72 0.001* Outcome Hypomagnesemia Normomagnesemia Hypermagnesemia Mortality (38/100)19 (50%) 11 (28.9%) 8 (21.1%) Hypomagnesemia vs Normomagnesemia: p-value - 0.001 * Hypomagnesemia vs Hypermagnesemia: p-value = 0.002* Normomagnesemia vs Hypermagnesemia: p-value = 0.444

Correlation of Serum Magnesium Levels with Mortality: The mean magnesium levels at admission were 1.77+0.73 mg/dL, with the minimum value being 1 mg/dL and the maximum being 4 mg/dL. The mean level of magnesium in the deceased patients was significantly lower (1.55+0.68 mg/dL), as compared to those, who were transferred out from the ICU (1.9+0.72 mg/dL), (p=0.001*). Overall, 62% of patientswere treated and transferred out, while 38% of patients expired during their stay in the ICU. The hypomagnesemia group (50%) had a significantly higher mortality rate as compared to the normomagnesemic (28.9%) and hypermagnesemic groups (21.1%) (HypoMg vs NormoMg, HypoMg vs HyperMg and NormoMg vs HyperMg p=0.001*, 0.002* and 0.444) (Table 3).

Graph 1: Correlation of Serum Magnesium with APACHE II and SOFA Scores Correlation of Serum Magnesium with APACHE II and SOFA Scores

Of the total number of study subjects, 86.4% required mechanical ventilation, with a mean duration of 9.04±5.41 days. There was a statistically significant association of the need for mechanical ventilation with magnesium (p=0.016)serum levels hypomagnesemia and normomagnesemic groups having more need, as compared to the hypermagnesemic group (HypoMg vs NormoMg, HypoMg vs HyperMg and NormoMg vs HyperMg p-value=0.962, 0.012 and 0.009 respectively). The mean duration of ICU stay was 9.65±5.72 days. A statistically insignificant association was observed for the duration of ICU stay and duration of mechanical ventilation with serum magnesium levels (p=0.728 and p=0.318 respectively). There was a statistically significant correlation between baseline APACHE II and SOFA scores with serum magnesium levels (p=0.001 and 0.002 respectively). The hypomagnesemia group had a significantly higher baseline APACHE II score when compared to the normomagnesemic and hypermagnesemia groups and the normomagnesemic group had a significantly higher APACHE II score as compared to the hypermagnesemic group (HypoMg vs NormoMg, HypoMg vs HyperMg, and NormoMg vs HyperMg p=0.019, 0.0006 and 0.048 respectively). Baseline SOFA scores in patients with

hypomagnesemia significantly more (HypoMg vs NormoMg, HypoMg vs HyperMg and NormoMg vs HyperMg, p-value=0.008, 0.0025 and 0.193 respectively) (Graph 1). A statistically significant correlation was found between magnesium disturbances with other electrolyte disorders and hypokalemia, hyporkalemia, hypocalcemia hypercalcemia (p=0.0003, p=0.001, p=0.039, p=0.005 respectively). The incidence of hypokalemia was significantly higher in the presence hypomagnesemia (HypoMg vs NormoMg, HypoMg vs HyperMg and NormoMg vs HyperMg p-value=0.002, 0.0006 and 0.151 respectively), as also the incidence of hypocalcemia (HypoMg vs NormoMg, HypoMg vs HyperMg and NormoMg vs HyperMg p-value=0.021, 0.079 and 0.821 respectively). The group with hypermagnesemia had a significantly higher number of patients with hyperkalemia compared to groups with normomagnesemia and hypomagnesemia (HypoMg vs NormoMg, HypoMg vs HyperMg, and NormoMg vs HyperMg p-value=0.042, 0.0001 and 0.044 $respectively). \ Hypercal cemia was significantly higher in$ the hypermagnesemic and normomagnesemic groups as compared to the hypomagnesemia group (HypoMg vs NormoMg, HypoMg vs HyperMg and NormoMg vs HyperMg, p-value=0.002, 0.0005 and 0.679 respectively). A statistically insignificant association was found between serum magnesium and the use of magnesium-lowering drugs (loop diuretics, thiazide diuretics, mannitol and aminoglycosides). Magnesium disturbances are common in the ICU, with hypomagnesemia occurring more frequently than hypermagnesemia^[7,12]. Despite this, their clinical implications and treatment are often overlooked^[13]. There is a paucity of studies on the effect of magnesium disruptions on the morbidity and mortality of patients in a multidisciplinary ICU in the Indian context who are critically ill. In advent of same the present study was undertaken on 100 critically ill patients aged 18 and above who were admitted to the ICU of the hospital. Serum magnesium levels at admission were correlated with mortality, need for and duration of mechanical ventilation and ICU stay, presence of comorbid conditions and electrolyte disturbances. The incidence of hypomagnesemia, hypermagnesemia and normomagnesemia at admission was found to be 41%, 14% and 45% respectively, in our study. This was higher as compared to study done by Kumar et al. who reported a 25% incidence of hypomagnesemia in a medical ICU in rural central India.14 Similar to our study, Escuela et al. reported an incidence of 52.5, 34 and 13.5% of hypomagnesemia, normomagnesemia hypermagnesemia respectively in 144 patients, in a Spanish multidisciplinary ICU^[15]. The high incidence of hypomagnesemia amongst ICU patients may be attributed to various factors like impaired magnesium absorption secondary to decreased gastrointestinal activity, malnutrition, presence of comorbidities like mellitus, gastrointestinal disorders, alcoholism and frequent occurrence of other electrolyte imbalances along with the concurrent use of magnesium lowering medications^[3]. In our study, the mean APACHE II and SOFA scores were significantly higher in patients with hypomagnesemia followed by those with normomagnesemia and hypermagnesemia (p=0.001, p=0.002 respectively). Our results were in contrast to results obtained from studies done by Kumar et al. and Safavi et al., who did not find any statistically significant correlation between magnesium levels and the severity scores [14,16]. However, El Said et al. found a significantly higher SOFA score in patients hypermagnesemia, followed normomagnesemia and hypomagnesemia^[17]. A significantly higher mortality in hypomagnesemia patients (51%) was found in our study as compared to normomagnesemic (28.9%) and hypermagnesemia patients (21.1%) (p=0.001 and 0.002 respectively). Likewise, higher mortality in hypomagnesemic patients as compared to normomagnesemic patients was reported by Safavi et al. (55% vs 35%), Chernow et al. (41% vs 13%), Rubeiz et al. (46% vs 25%) and Solanki^[12,16,18,19] A higher mortality in this group of patients can be ascribed to concomitant electrolyte abnormalities, the presence of multiple comorbidities, and higher APACHE II and SOFA scores at admission^[3,7,12]. In our study, the mean magnesium level was 1.55+0.68 mg/dL among the patients who expired, while it was 1.9+0.72 mg/dL among the survivors. The association of mean magnesium levels with outcome was found to be statistically significant (p=0.001). Hypomagnesemia can lead to muscle weakness and respiratory failure, hypermagnesemia is associated with neuromuscular blockade and consequent muscle paralysis. Thus, magnesium disturbances may be associated with increased requirement and duration of mechanical ventilation in critically ill patients [13,14]. In our study, the need for mechanical ventilation was significantly higher in hypomagnesemia and normomagnesemic patients as compared to hypermagnesemic patients (p =0.012 and 0.009 respectively). This was comparable to other studies^[13,20,21]. We did not observe any differences in the duration of ICU stay and duration of mechanical ventilation based on serum magnesium levels. This was similar to the study of Kumar et al., although Limaye et al., and Mousavi et al. found that patients with hypomagnesemia required a significantly longer duration of mechanical ventilation [14,20,22]. A higher incidence of gastrointestinal disorders was significantly higher in hypomagnesemia as compared to normomagnesemic patients (p=0.023). This is comparable to the results obtained by Chernow et al. and Deheinzelin^[18,23] Magnesium deficiency is common

in patients with gastrointestinal disorders, due to loss of magnesium via continuous nasogastric drainage, abdominal drains and secretions, altered magnesium absorption from the gut and use of total parenteral nutrition. Magnesium depletion in chronic alcoholism may be attributed to malnutrition, chronic diarrhea, pancreatitis and renal tubular dysfunction caused by alcohol leading to wasting of magnesium by the kidney^{1/1}. A significantly increased incidence of alcoholism in patients with decreased and normal magnesium levels as compared with higher magnesium levels was observed. This was in concurrence with study done by Soliman et al. who observed an increasing trend of hypomagnesemia in persons consuming alcohol^[13]. However, they could not prove statistical significance. Chronic kidney disease is associated with high magnesium levels due to inefficient renal excretion. A number of patients with CKD were found to be significantly higher in the hypermagnesemic group as compared to the hypomagnesemia and normomagnesemic groups. (p = 0.0009 and 0.0004 respectively). Magnesium deficiency is common in diabetic patients and occurs secondary to insulin resistance and increased renal loss of magnesium accompanying glycosuria. Though we found a high incidence of hypomagnesemia in diabetic patients (43.8%), there was no significant association with magnesium levels. However, Safavi et al. and Limaye et al. found a statistically significant correlation between low serum magnesium and diabetes mellitus which was in contrast to our study[16,20]. Magnesium disturbances are often associated with other electrolyte disorders. We found the incidence of hypokalemia to be significantly higher in the hypomagnesemia group ascompared to the normomagnesemic and hypermagnesemic groups (p = 0.002 and 0.0006 respectively). This is corroborated by many other studies^[19,24,25]. Hypokalemia is common in patients with hypomagnesemia and is refractory to isolated potassium supplementation unless the magnesium deficiency is treated. Magnesium deficiency increases potassium wasting by increasing distal potassium secretion^[26]. The incidence of hyperkalemia was significantly higher in patients with hypermagnesemia (HyperMg vs HypoMg and HyperMg vs NormoMg, 0.0001 and 0.044 respectively) and was attributed to the increased association of chronic kidney disease with hypermagnesemia hyperkalemia^[7]. Hypocalcemia is also caused by hypomagnesemia as defects in release, synthesis, and end-organ resistance of parathyroid hormone can occur^[11]. In our study, there were substantially more patients with hypocalcemia in the hypomagnesemia group than in the normomagnesemic group. Limaye et al., Soliman et al., Saleem et al., and Pannem et al. all came to similar conclusions. [20,24,27,28] In comparison to the normomagnesemic and hypomagnesemia groups,

the number of patients with hypercalcemia was considerably higher in the hypermagnesemic group. This results from people with the chronic renal disease having hypermagnesemia and hypercalcemia simultaneously^[29]. By observing that individuals with hypomagnesemia had sepsis twice as frequently as those with normomagnesemia, Kumar and Limaye et al. established a statistically significant association between the two^[14,20]. The difference in the incidence of sepsis between the various magnesium groups in our study although, was not significant. Magnesium depletion is brought on by drugs that impede magnesium reabsorption at the renal tubules, including loop and thiazide diuretics, mannitol and aminoglycosides. In contrast to our investigation, Zafar et al. found no statistically significant association between the usage of magnesium-lowering medications and hypomagnesemia^[30]. Our study has some limitations. We correlated all the parameters with magnesium levels on the day of admission and changes in magnesium levels during the course of the ICU stay were not evaluated. Patients were followed up until their stay in the ICU, which may have affected the overall outcome parameters. Ionized magnesium, which is the metabolically active form, was not evaluated[31].

CONCLUSIONS

We can conclude from the present study that hypermagnesemia and hypomagnesemia are commonly encountered in ICU Hypomagnesemia is associated with a higher ICU mortality and requirement for mechanical ventilation and higher APACHE II and SOFA scores at admission. The incidence is increased in the presence of gastrointestinal disorders and alcoholism and electrolyte disorders like hypokalemia hypocalcemia are commonly associated. The incidence of hypermagnesemia is higher in patients with chronic kidney disease and hyperkalemia and hypercalcemia are often associated. We recommend, for all patients admitted to the ICU, evaluation of Mg, especially in patients susceptible to Mg disturbances like gastrointestinal disorders, alcoholism and chronic kidney disease. Vigilant monitoring of other electrolytes like potassium and calcium in patients with Mg disturbances is also warranted. It may be considered prudent to identify and correct Mg disturbances, though further studies are recommended to evaluate if correction of Mg disturbances at admission decreases ICU mortality.

REFERENCES

1. Lee J.W., 2010. Fluid and Electrolyte Disturbances in Critically III Patients. Electrolytes Blood Pressure, Vol. 8: 10.5049/EBP.2010.8.2.72.

- Velissaris D., V. Karamouzos, C. Pierrakos, D. Aretha and M. Karanikolas., 2015. Hypomagnesemia in Critically III Sepsis Patients. J. Clin. Med. Res., Vol. 7: 10.14740/jocmr2351w.
- Hansen B.A. and Ø. Bruserud., 2018. Hypomagnesemia in critically ill patients. J. Intensive Care, Vol. 6. 10.1186/s 40560-018-0291-y.
- de Baaij J.H.F., J.G.J. Hoenderop and R.J.M. Bindels., 2012. Regulation of magnesium balance: Lessons learned from human genetic disease. Clin. Kidney J., Vol. 5: 10.1093/ndtplus/sfr164.
- Gragossian A., K. Bashir, B.S. Bhutta and R. Friede., 2023. Hypomagnesemia. In: In: StatPearls [Internet]., StatPearls Publishing., (Ed.)., Treasure Island (FL)., 0 pp.
- 6. Kolley M. and W. Isakow., 2012. Electrolyte abnormalities. In: The Washington manual of critical care., Lippincott Williams and Wilkins., Philadelphia., 0 pp:204–207.
- Marino P., 2014. Fluid and electrolyte disorders-Magnesium. In: The ICU book., Lippincott Williams and Wilkins., Philadelphia., 0 pp: 687-699.
- Huijgen H.J., M. Soesan, R. Sanders, W.M. Mairuhu, J. Kesecioglu and G.T. Sanders., 2000. Magnesium Levels in Critically III Patients. Am. J. Clin. Pathol., Vol. 114: 10.1309/jr9y-pptx-ajtc-qdrd.
- Knaus W.A., E.A. Draper, D.P. Wagner and J.E. Zimmerman., 1985. APACHE-II-a severity of disease classification system. Crit Care Med., Vol. 13: 10.1097/00003465-198603000-00013.
- Jones A.E., S. Trzeciak and J.A. Kline., 2009. The Sequential Organ Failure Assessment score for predicting outcome in patients with severe sepsis and evidence of hypoperfusion at the time of emergency department presentation*. Crit. Care Med., Vol. 37: 10.1097/CCM.0b013e31819def97.
- 11. Jahnen-Dechent W. and M. Ketteler., 2012. Magnesium basics. Oxford University Press (OUP), Clin. Kidney J., Vol. 5: 0.1093/ndtplus/sfr163.
- Solanki J., K. Runwal, N. Beke, A. Bahulikar and D. Phalgune., 2022. Serum magnesium levels in critically ill patients on admission in ICU and its correlation with outcome. J Assoc Physicians India., 70: 11-12.
- 13. Kiran H.S., A. Sriramachandrudu, K.A. Murthy and H.B. Gowdappa., 2015. Serum magnesium levels in critically ill patients A prospective study. Intl J Sci Stud., Vol. 3: 10.17354/ijss/2015/486.
- Kumar S., S. Jain, S. Agrawal and A. Honmode.,
 2016. Impact of serum magnesium levels in critically ill elderly patients-A study in a rural teaching hospital. J. Clin. Gerontol. Geriatrics, Vol. 7: 10.1016/j.jcgg.2016.04.002.

- Escuela M.P., M. Guerra, J.M. An, V. Martnez-Vizcano, M.D. Zapatero, A. Garca-Jaln and S. Celaya., 2005. Total and ionized serum magnesium in critically ill patients. Intensive Care Med., Vol. 31: 10.1007/s00134-004-2508-x.
- Safavi M. and A. Honarmand., 2007. Admission hypomagnesemia-impact on mortality or morbidity in critically ill patients. Middle East J Anaesthesiol., 19: 645-660.
- 17. Said S.M.S.E. and W.W. Aly., 2014. Magnesium levels among critically ill elderly patients; mortality and morbidity correlation. Adv. Aging Res., Vol .3: 10.4236/aar.2014.31003.
- Chernow B., S. Bamberger, M. Stoiko, M. Vadnais,
 Mills, V. Hoellerich and A.L. Warshaw., 1989.
 Hypomagnesemia in Patients in Postoperative Intensive Care. Chest, Vol. 95: 10.1378/chest.95.2.391.
- Guérin C., C. Cousin, F. Mignot, M. Manchon and G. Fournier., 1996. Serum and erythrocyte magnesium in critically ill patients. Intensive Care Med., Vol. 22: 10.1007/BF01709512.
- Limaye C.S., V.A. Londhey, M.Y. Nadkart and N.E. Borges., 2011. Hypomagnesemia in critically ill medical patients. J Assoc Physicians India., 59: 19-22.
- Islam M.M., M.O. Faruq, M. Asaduzzaman, A. Sultana and U.K. Mollick., 2017. Hypomagnesemia is associated with increase in mortality and morbidity in ICU: Can serum magnesium level be used as prognostic marker in critically ill ICU admitted patients? Bangladesh Crit. Care J., Vol. 5: 10.3329/bccj.v5i2.34381.
- 22. Mousavi S.A., S. Salimi and M. Rezai., 2010. Serum magnesium level impact on the outcome of patients admitted to the Intensive care unit. Tan affos., 9: 28-33.
- Deheinzelin D., E.M. Negri, M.R. Tucci, M.Z. Salem and V.M. da Cruz *et al.*, 2000. Hypomagnesemia in critically ill cancer patients: A prospective study of predictive factors. Braz. J. Med. Bio. Res., Vol. 33: 10.1590/s0100-879x2000001200007.
- Soliman H.M., D. Mercan, S.S.M. Lobo, C. Mélot and J.L. Vincent., 2003. Development of ionized hypomagnesemia is associated with higher mortality rates. Crit. Care Med., Vol. 31: 10.1097/01.CCM.0000060867.17556.A0.
- Ryzen E., N. Elbaum, F.R. Singer and R.K. Rude., 1985. Parenteral magnesium tolerance testing in the evaluation of magnesium deficiency. Magnesium., 4: 137-147.
- 26. Huang C.L. and E. Kuo., 2007. Mechanism of Hypokalemia in Magnesium Deficiency. J. Am. Soc. Nephrology, Vol. 18: 10.1681/ASN.2007070792.

- 27. Saleem A.F. and A. Haque., 2009. On admission hypomagnesemia in critically ill children: Risk factors and outcome. The Indian J. Pediatr., Vol. 76: 10.1007/s12098-009-0258-z.
- 28. Pannem R.B. and C.S.R. Munamala., 2018. An observational study on effects of hypomagnesemia among critically ill patients at a tertiary care hospital. Int. J. Adv. Med., Vol. 5: 10.18203/2349-3933.ijam20184254.
- 29. Ferrè S., J.G.J. Hoenderop and R.J.M. Bindels., 2012. Sensing mechanisms involved in Ca2+ and Mg2+ homeostasis. Kidney Int., Vol. 82: 10.1038/ki.2012.179.
- Zafar M.S., J. Wani, R. Karim, M. Mir and P. Koul., 2014. Significance of serum magnesium levels in critically ill-patients. Int. J. Applied Basic Med. Res., Vol. 4: 10.4103/2229-516X.125690.
- 31. Swaminathan R., 2003. Magnesium metabolism and its disorders. Clin Biochem Rev., 24: 47-66.