files/journal/2022-09-02_12-54-44-000000_354.png

Journal of Engineering and Applied Sciences

ISSN: Online 1818-7803
ISSN: Print 1816-949x

Journal of Engineering and Applied Sciences (JEAS) published by MAK Hill Publications is peer reviewed open access journal publishes fundamental and applied research articles and review spanning different areas of engineering disciplines, application and interdisciplinary topics.

References

  1. Häberle, A., C. Zahler, H. Lerchenmüller, M. Mertins, C. Wittwer, F. Trieb and J. Dersch, 2002. The Solarmundo line focussing Fresnel collector: Optical and thermal performance and cost calculations., https://docplayer.net/56908145-The-solarmundo-line-focussing-fresnel-collector-optical-and-thermal-performance-and-cost-calculations.html.
  2. Kakac, S., R.K. Shah and W. Aung, 1987. Handbook of Single-Phase Convective Heat Transfer. 18th Edn., John Wiley and Sons Inc, New York, ISBN-13: 0-471-81702-3, Pages: 900.
  3. Sultana, T., G.L. Morrison, R. Taylor and G. Rosengarten, 2015. TRNSYS modeling of a linear fresnel concentrating collector for solar cooling and hot water applications. J. Solar Energy Eng., Vol. 137. 10.1115/1.4028868.
  4. Kalogirou, S.A., 2004. Solar thermal collectors and applications. Prog. Energy Combust. Sci., 30: 231-295.
  5. Larsen, S.F., M. Altamirano and A. Hernández, 2012. Heat loss of a trapezoidal cavity absorber for a linear fresnel reflecting solar concentrator. Renewable Energy, 39: 198-206.
  6. Kalogirou, S.A., 2009. Solar Energy Engineering: Processes and Systems. 1st Edn., Academic Press, ISBN-17: 978-0-12-374501-9, Pages: 760.
  7. Meyer, J. and J. Olivier, 2011. Heat Transfer in the Transitional Flow Regime. In: Evaporation, Condensation and Heat transfer, Meyer, J.P. and J.A. Olivier, (Eds.)., InTech, South Africa, ISBN-17: 978-953-307-583-9, pp: 245-260.
  8. Dey, C.J., 2004. Heat transfer aspects of an elevated linear absorber. Solar Energy, 76: 243-249.
  9. Pino, F.J., R. Caro, F. Rosa and J. Guerra, 2013. Experimental validation of an optical and thermal model of a linear fresnel collector system. Applied Therm. Eng., 50: 1463-1471.
  10. Velázquez, N., O. García-Valladares, D. Sauceda and R. Beltrán, 2010. Numerical simulation of a linear fresnel reflector concentrator used as direct generator in a solar-GAX cycle. Energy Convers. Manage., 51: 434-445.
  11. Goswami, R.P., B.S. Negi, H.K. Sehgal and G.D. Sootha, 1990. Optical designs and concentration characteristics of a linear fresnel reflector solar concentrator with a triangular absorber. Solar Energy Mater., 21: 237-251.
  12. Mathur, S.S., T.C. Kandpal and B.S. Negi, 1991. Optical design and concentration characteristics of linear fresnel reflector solar concentrators—ii. mirror elements of equal width. Energy Convers. Manage., 31: 221-232.
  13. Eck, M., J.F. Feldhoff and R. Uhlig, 2010. Thermal Modelling and Simulation of Parabolic Trough Receiver Tubes. Proceedings of the ASME 2010 4th International Conference on Energy Sustainability. ASME 2010 4th International Conference on Energy Sustainability, May 17-22, 2010, ASMEDC, USA, pp: 659-666.
  14. Abbas, R., J. Muñoz and J.M. Martínez-Val, 2012. Steady-state thermal analysis of an innovative receiver for linear fresnel reflectors. Applied Energy, 92: 503-515.
  15. Okafor, I.F., J. Dirker and J.P. Meyer, 2014. Influence of circumferential solar heat flux distribution on the heat transfer coefficients of linear fresnel collector absorber tubes. Solar Energy, 107: 381-397.
  16. Fand, R.M. and K.K. Keswani, 1973. Combined natural and forced convection heat transfer from horizontal cylinders to water. Int. J. Heat Mass Transfer, 16: 1175-1191.
  17. Ghajar, A.J. and L.M. Tam, 1995. Flow regime map for a horizontal pipe with uniform wall heat flux and three inlet configurations. Exp. Thermal Fluid Sci., 10: 287-297.
  18. Chae, M.S. and B.J. Chung, 2014. Laminar mixed-convection experiments in horizontal pipes and derivation of a semi-empirical buoyancy coefficient. Int. J. Thermal Sci., 84: 335-346.
  19. Mohammed, H.A. and Y.K. Salman, 2007. Experimental investigation of mixed convection heat transfer for thermally developing flow in a horizontal circular cylinder. Applied Thermal Eng., 27: 1522-1533.
  20. Coutier, J.P. and R. Grief, 1986. Mixed laminar convection in a horizontal tube with natural convection around its boundaries. Int. J. Heat Mass Transfer, 29: 391-402.
  21. Bergles, A.E. and R.R. Simonds, 1971. Combined forced and free convection for laminar flow in horizontal tubes with uniform heat flux. Int. J. Heat Mass Transfer, 14: 1989-2000.
  22. Boufendi, T. and M. Afrid, 2004. The physical aspect of three-dimensional mixed convection in a uniformly heated horizontal pipe. Sci. Technol., 22: 39-52.
  23. Touahri, S. and T. Boufendi, 2012. Numerical study of the conjugate heat transfer in a horizontal pipe heated by joulean effect. Thermal Sci., 16: 53-67.
  24. Piva, S., G.S. Barozzi and M.W. Collins, 1995. Combined convection and wall conduction effects in laminar pipe flow: Numerical predictions and experimental validation under uniform wall heating. Heat Mass Transfer, 30: 401-409.
  25. Anthony, L., 1995. Mixed Convection Heat Transfer in Vertical, Horizontal, and Inclined Pipes.MSC Thesis.
  26. Grassi, W. and D. Testi, 2006. Heat transfer correlations for turbulent mixed convection in the entrance region of a uniformly heated horizontal tube. J. Heat Transfer, 128: 1103-1107.
  27. Peyghambarzadeh, S.M., 2011. Forced convection heat transfer in the entrance region of horizontal tube under constant heat flux. World Applied Sci. J., 15: 331-338.
  28. Bazdidi-Tehrani, F., M. Aghaamini and S. Moghaddam, 2016. Radiation effects on turbulent mixed convection in an asymmetrically heated vertical channel. Heat Transfer Eng., 38: 475-497.
  29. Satyamurty, V.V. and R. Repaka, 2011. Superposition relations for forced convective local nusselt numbers for flow through asymmetrically heated parallel-plate channels. Heat Transfer Eng., 32: 476-484.
  30. Osborne, D.G. and F.P. Incropera, 1985. Laminar, mixed convection heat transfer for flow between horizontal parallel plates with asymmetric heating. Int. J. Heat Mass Transfer, 28: 207-217.