files/journal/2022-09-02_12-54-44-000000_354.png

Journal of Engineering and Applied Sciences

ISSN: Online 1818-7803
ISSN: Print 1816-949x

Journal of Engineering and Applied Sciences (JEAS) published by MAK Hill Publications is peer reviewed open access journal publishes fundamental and applied research articles and review spanning different areas of engineering disciplines, application and interdisciplinary topics.

References

  1. Lee, S. and G.J. McLachlan, 2012. Finite mixtures of multivariate skew t-distributions: Some recent and new results. Stat. Comput., 24: 181-202.
  2. Contreras-Reyes, J. and D. Cortés, 2016. Bounds on Rényi and Shannon entropies for finite mixtures of multivariate skew-normal distributions: Application to swordfish (Xiphias gladius Linnaeus). Entropy, Vol. 18. 10.3390/e18110382.
  3. Arellano-Valle, R.B., J.E. Contreras-Reyes and M.G. Genton, 2012. Shannon entropy and mutual information for multivariate skew-elliptical distributions. Scand. J. Stat., 40: 42-62.
  4. Azzalini, A., 1996. The multivariate skew-normal distribution. Biometrika, 83: 715-726.
  5. Genton, M.G. and N.M.R. Loperfido, 2005. Generalized skew-elliptical distributions and their quadratic forms. Ann. Inst. Stat. Math., 57: 389-401.
  6. Kahrari, F., M. Rezaei, F. Yousefzadeh and R.B. Arellano-Valle, 2016. On the multivariate skew-normal-cauchy distribution. Stat. Probab. Lett., 117: 80-88.
  7. Lin, T.I., J.C. Lee and W.J. Hsieh, 2007. Robust mixture modeling using the skew t distribution. Stat. Comput., 17: 81-92.
  8. Pyne, S., X. Hu, K. Wang, E. Rossin and T.I. Lin et al., 2009. Automated high-dimensional flow cytometric data analysis. Proc. Nat. Acad. Sci., 106: 8519-8524.
  9. Shannon, C.E., 1948. A mathematical theory of communication. Bell Syst. Tech. J., 27: 379-423.
  10. Rényi, A., 1961. On measures of entropy and information. Berkeley Symp. Math. Statist. Prob., 1: 547-561.
  11. Abid, S.H. and U.J. Quaez, 2020. Rényi entropy for mixture model of multivariate skew laplace distributions. J. Phys.: Conf. Ser., Vol. 1591. 10.1088/1742-6596/1591/1/012037.
  12. Abid, S.H. and U.J. Quaez, 2019. Rѐnyi entropy for mixture model of ultivariate skew normal-cauchy distributions. J. Theor. Applied Inf. Technol., 97: 3526-3539.
  13. Cover, T.M. and J.A. Thomas, 2006. Elements of Information Theory. John Wiley & Sons, Inc.,, ISBN-13: 9780471748823, Pages: 748.
  14. Azzalini, A. and A. Capitanio, 2003. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew T-distribution. J. Royal Stat. Soc. Ser. B: Stat. Methodol., 65: 367-389.
  15. Arslan, O., 2008. An alternative multivariate skew laplace distribution: Properties and estimation. Stat. Pap., 51: 865-887.
  16. Titterington, D.M. A.F.M. Smith and U.E. Makov, 1985. Statistical Analysis of Finite Mixture Distributions. Chichester, New York, ISBN-10: 0471907634, Pages: 243.