files/journal/2022-09-02_12-54-44-000000_354.png

Journal of Engineering and Applied Sciences

ISSN: Online 1818-7803
ISSN: Print 1816-949x
100
Views
1
Downloads

Stereo Matching Performance Analysis of Cost Functions on the Graphic Processing Unit (GPU) for Pervasive Computing

Gwang-Soo Hong, Woong Hoe, Byung-Gyu Kim, Jang-Woon Beak and Kee-Koo Kwon
Page: 1480-1487 | Received 21 Sep 2022, Published online: 21 Sep 2022

Full Text Reference XML File PDF File

Abstract

Stereo imaging is a powerful technique fordetermining the distance to objects using a pairs of cameraspaced apart. The extremely high computational requirements ofstereo vision limit application to non realtime applications wherehigh computing power is available. To overcome the limitation, we utilized the general strategy for parallelization of dense cost functions on Compute Unified Device Architecture (CUDA) with Graphic Processing Unit (GPU), especially for pervasive environment. The challenges of mapping a sequential stereo matching algorithm to a massively parallel thread environment are considered. Compared to the CPU counterpart, the processing speed of the stereo matching algorithm based on CUDA programming can be improved by about from 107-369 times.


How to cite this article:

Gwang-Soo Hong, Woong Hoe, Byung-Gyu Kim, Jang-Woon Beak and Kee-Koo Kwon. Stereo Matching Performance Analysis of Cost Functions on the Graphic Processing Unit (GPU) for Pervasive Computing.
DOI: https://doi.org/10.36478/jeasci.2016.1480.1487
URL: https://www.makhillpublications.co/view-article/1816-949x/jeasci.2016.1480.1487