files/journal/2022-09-02_12-54-44-000000_354.png

Journal of Engineering and Applied Sciences

ISSN: Online 1818-7803
ISSN: Print 1816-949x
99
Views
0
Downloads

Local Quadrant Pattern with Co-occurrence Matrix (LQP-CM): Hybrid Method for Image Classification and Feature Extraction

Hassan Mohammed Mahdi Al-Jawahry and Hind Rustum Mohammed
Page: 2171-2176 | Received 21 Sep 2022, Published online: 21 Sep 2022

Full Text Reference XML File PDF File

Abstract

Image classification is important in several fields which depend on the methods of extracting the features. This study proposes a new method for features extraction called Local Quadrant Pattern with Co-occurrence Matrix (LQP-CM) that related with Local Ternary Pattern (LTP) and Gray-Level Co-occurrence Matrix (GLCM). LQP-CM will map the values into four types instead of two like Local Binary Pattern (LBP) or three like LTP. For classification, this study will use the Euclidean Distance (ED) to classifying the features that extracting. The data set that used in this study is Brodatz dataset. The MATLAB environment was adopted in the programming and the criteria was used to evaluate the performance of the proposed method is percentage of correct classification which proved successful in classification the database used in high efficiency.


How to cite this article:

Hassan Mohammed Mahdi Al-Jawahry and Hind Rustum Mohammed. Local Quadrant Pattern with Co-occurrence Matrix (LQP-CM): Hybrid Method for Image Classification and Feature Extraction.
DOI: https://doi.org/10.36478/jeasci.2019.2171.2176
URL: https://www.makhillpublications.co/view-article/1816-949x/jeasci.2019.2171.2176